100 research outputs found

    Development of an Agricultural Primary Productivity Decision Support Model: A Case Study in France

    Get PDF
    Agricultural soils provide society with several functions, one of which is primary productivity. This function is defined as the capacity of a soil to supply nutrients and water and to produce plant biomass for human use, providing food, feed, fiber, and fuel. For farmers, the productivity function delivers an economic basis and is a prerequisite for agricultural sustainability. Our study was designed to develop an agricultural primary productivity decision support model. To obtain a highly accurate decision support model that helps farmers and advisors to assess and manage the provision of the primary productivity soil function on their agricultural fields, we addressed the following specific objectives: (i) to construct a qualitative decision support model to assess the primary productivity soil function at the agricultural field level; (ii) to carry out verification, calibration, and sensitivity analysis of this model; and (iii) to validate the model based on empirical data. The result is a hierarchical qualitative model consisting of 25 input attributes describing soil properties, environmental conditions, cropping specifications, and management practices on each respective field. An extensive dataset from France containing data from 399 sites was used to calibrate and validate the model. The large amount of data enabled data mining to support model calibration. The accuracy of the decision support model prior to calibration supported by data mining was ~40%. The data mining approach improved the accuracy to 77%. The proposed methodology of combining decision modeling and data mining proved to be an important step forward. This iterative approach yielded an accurate, reliable, and useful decision support model for the assessment of the primary productivity soil function at the field level. This can assist farmers and advisors in selecting the most appropriate crop management practices. Embedding this decision support model in a set of complementary models for four adjacent soil functions, as endeavored in the H2020 LANDMARK project, will help take the integrated sustainability of arable cropping systems to a new level

    Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe's terrestrial ecosystems : a review

    Get PDF
    Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.Peer reviewe

    Les données du GIS Sol pour appuyer les politiques d’atténuation et d’adaptation au changement climatique: Barrières et stratégies de valorisation

    No full text
    International audienceSoils play a key role in climate change mitigation and for the adaptation of the agricultural and forestry sectors. The development of public policies aimed at reducing our greenhouse gas emissions, at increasing the sink function of the soils with respect to atmospheric carbon dioxide, and strengthening our capacities of adaptation, particularly in terms of agriculture or forestry, is primarily based on knowledge of our soils and their management. The Soil Scientific Interest Group (Sol GIS) runs four major soil data acquisition programs and is responsible for their data management, processing and dissemination. Data from the GIS Sol have been, for several decades, at the heart of studies commissioned by the public authorities and research work aimed at better understanding and managing soils, for the mitigation of climate change or to adapt agriculture and the forest to it. These data make it possible to better understand and characterize the past, present and future role of soils in relation to climate change. The potential of the GIS Soil data is however under-exploited, for various reasons, and in particular the complexity of the soil data and its accessibility. We may reasonably recommend a strengthening of efforts to make it better known, particularly among the scientific communities working on climate change, for example by targeting certain national and international data dissemination portals. It will also be necessary to improve its accessibility, in particular by clarifying the related legal aspects, and its interoperability. These are the conditions for realizing the full potential of the ever-evolving GIS programs in research andpolicy support for climate change mitigation and adaptation.Los suelos desempeñan un papel importante en la atenuación del cambio climático y en la adaptación de los sectores agrícola y forestal. La elaboración de políticas públicas que tengan por objeto reducir nuestras emisiones de gases de efecto invernadero, aumentar la función de sumidero de los suelos frente al dióxido de carbono atmosférico y reforzar nuestra capacidad de adaptación, especialmente en materia de agricultura o silvicultura se basa en el conocimiento y la existencia de datos sobre nuestros suelosy su gestión. El Grupo de Interés Científico Suelo (GIS Sol) dirige cuatro grandes programas de adquisición de datos de suelo y es responsable de su gestión, tratamiento y difusión. Los datos del GIS Sol han sido, durante varias décadas, el centro de estudios encargados por las autoridades públicas y de trabajos de investigación para comprender mejor y gestionar los suelos, para la atenuación del cambio climático o para adaptar la agricultura y los bosques a las perturbaciones anunciadas. Estos datos permiten comprender y caracterizar mejor el papel pasado, presente y futuro de los suelos en relación con el cambio climático. Sin embargo, el potencial de los datos del GIS Sol no se aprovecha plenamente por diversas razones, entre ellas la complejidad de los datos de suelo y su accesibilidad. Parece razonable promover un fortalecimiento de los esfuerzos para dar a conocer esta cuestión, en particular entre las comunidades científicas que se ocupan del cambio climático, por ejemplo, centrándose en determinados portales nacionales e internacionales de difusión de datos. Asimismo, deberá mejorarse su accesibilidad, en particular mediante la aclaración de los aspectos jurídicos y su interoperabilidad. Estas son las condiciones para la realización del pleno potencial de los programas del GIS, de los programas en continua evolución, en materia de investigación y de apoyo a las políticas para la atenuación y la adaptación al cambio climático.Les sols jouent un rôle prépondérant en matière d’atténuation du changement climatique etd'adaptation des secteurs agricoles et forestiers. L’élaboration de politiques publiques quiviseraient à réduire nos émissions de gaz à effet de serre, à augmenter la fonction de puits dessols vis-à-vis du dioxyde de carbone atmosphérique, et à renforcer nos capacités d’adaptation,notamment en matière d’agriculture ou de sylviculture, repose sur la connaissance et l’existencede données concernant nos sols et leur gestion. Le Groupement d’Intérêt Scientifique Sol (le GISSol) pilote quatre grands programmes d’acquisition de la donnée sol, et est responsable de sagestion, de son traitement et de sa diffusion. Les données du GIS Sol ont été, depuis plusieursdécennies, au cœur d’études mandatées par les pouvoirs publics et de travaux de recherchevisant à mieux comprendre et gérer les sols, pour l’atténuation du changement climatique oupour adapter l’agriculture et la forêt aux perturbations annoncées. Ces données permettentde mieux comprendre et caractériser les rôles passé, présent et futur des sols en lien avecle changement climatique. Le potentiel des données du GIS Sol est toutefois sous-exploité,pour différentes raisons, et notamment la complexité de la donnée sol et son accessibilité. Ilsemble raisonnable de préconiser un renforcement des efforts pour la faire mieux connaître,notamment auprès des communautés scientifiques qui travaillent sur le changement climatique,par exemple en ciblant certains portails nationaux et internationaux de diffusion de la donnée.Il conviendra également d’améliorer son accessibilité, notamment en clarifiant les aspectsjuridiques s’y rapportant, et son inter-opérabilité. Ce sont là des conditions pour la réalisation du plein potentiel des programmes du GIS, des programmes en évolution permanente, en matière de recherche et d’appui aux politiques pour l’atténuation et l'adaptation au changement climatiqu

    Description d'ASTAVIT, une méthode d'évaluation rapide de la stabilité structurale des sols basée sur la reconnaissance d'images

    No full text
    International audienceMeasuring soil structure stability has always been a challenge, and various approaches have been proposed, mainly related to measuring soil aggregate stability upon wetting. This paper presents a rapid and cost-effective tool for evaluating soil structural stability named ASTAVIT, which stands for Aggregate STability Assessment using VIdeo Tests. The ASTAVIT principle involves visually monitoring the spreading of aggregates. This has already been implemented in the SLAKES smartphone application (now renamed Moulder), which simplifies the measurement of soil aggregates with minimal equipment. The aim of this work was to develop a robust, adaptable, and representative enough method that can be widely used in soil science laboratories.The protocol has been modified to use a 3D-printed plate to record the immersion of up to 96 individual aggregates in water. The increase in the projected area of the aggregates during slaking is tracked using image recognition software, ImageJ. The final stability index is determined based on this area increase. Soil structural stability can be assessed within an hour using a procedure that involves placing aggregates on a plate, filming, and analyzing. This method provides an objective evaluation of soil stability in a timely manner.The amount of soil used per test is similar to that used in Le Bissonnais tests (ISO 10930), ensuring representative results. The ASTAVIT index demonstrates expected behaviors of aggregate stability, as evidenced by its correlation with other soil characteristics and its ability to differentiate between soils that have undergone different tillage practices. An indicative classification of the ASTAVIT index into four categories of soil stability, similar to the Le Bissonnais tests, is proposed.ASTAVIT is expected to facilitate a broader implementation of structural stability studies.La mesure de la stabilité de la structure du sol a toujours été un défi, et diverses approches ont été proposées, principalement liées à la mesure de la stabilité des agrégats du sol lors de l'humidification. Cet article présente un outil rapide et rentable d'évaluation de la stabilité structurelle des sols, appelé ASTAVIT (Aggregate STability Assessment using VIdeo Tests). Le principe d'ASTAVIT consiste à estimer visuellement l'étalement des agrégats lors de leur immersion dans l’eau. Ce principe a déjà été mis en œuvre dans l'application pour smartphone SLAKES (aujourd'hui rebaptisée Moulder), qui simplifie la mesure des agrégats du sol avec un équipement minimal. L'objectif de ce travail était de développer une méthode robuste, adaptable et suffisamment représentative qui puisse être largement utilisée dans les laboratoires de science du sol.Le protocole a été modifié pour utiliser une plaque imprimée en 3D pour enregistrer l'immersion de 96 agrégats individuels dans l'eau. L'augmentation de la surface perçue des agrégats au cours de l'ébullition est suivie à l'aide du logiciel de reconnaissance d'images ImageJ. L'indice de stabilité final est déterminé sur la base de cette augmentation de surface. La stabilité structurelle du sol peut être évaluée en moins d’une heure à l'aide d'une procédure qui consiste à placer les agrégats sur une plaque, à les filmer et à les analyser. Cette méthode fournit une évaluation objective de la stabilité du sol en temps opportun.La quantité de sol utilisée par essai est similaire à celle utilisée dans les essais du Bissonnais (ISO 10930), ce qui garantit des résultats représentatifs. L'indice ASTAVIT démontre les comportements attendus en matière de stabilité des agrégats, comme en témoignent sa corrélation avec d'autres caractéristiques du sol et sa capacité à différencier les sols ayant fait l'objet de différentes pratiques de travail du sol. Une classification indicative de l'indice ASTAVIT en quatre catégories de stabilité du sol, similaire aux tests du Bissonnais, est proposée.ASTAVIT devrait faciliter la démocratisation des études de stabilité structurelle

    Scientific indicators and stakeholders’ perceptions on soil threats in France: how do they compare?

    No full text
    International audienceSoils are under multiple threats on a global scale, with varying levels of intensity and nature in different regions. Therefore, it is crucial to assess soil threats at a local level using specific indicators. Scientific indicators have been developed to accurately assess soil health, yet they can be challenging to implement at a local scale. As some stakeholders have a good knowledge of soil condition, the objective of this paper is to determine whether stakeholders' perception of soil threats can be used as a complementary indicator. The study focuses on five soil threats: erosion, artificialisation, compaction, soil organic carbon (SOC) loss, and contamination. It is based on 1,951 responses from a participatory stakeholder consultation conducted in France in 2021. We explored stakeholders’ prioritization of soil threats and elaborated perception maps at the departmental scale. We then compared stakeholders’ perception maps with scientific indicator maps per soil threats at the departmental scale. Our findings indicate that stakeholders consider artificialisation to be the most important threat in France. The spatial distribution of soil threats based on stakeholders’ perceptions and scientific indicators matches in 43% of the departments for SOC loss, and in over half of the departments for erosion (50%), artificialisation (63%), compaction (57%), and contamination (74%). However, disparities remain in certain departments and depending on the threat. These disparities can be explained by biases in the used indicators (scientific or stakeholders’ perception) or in the comparison. It can be concluded that, when these biases are taking into consideration, stakeholders’ perception can be used as an indicator for soil threats and can supplement existing scientific indicators

    Scientific indicators and stakeholders’ perceptions on soil threats in France: how do they compare?

    No full text
    International audienceSoils are under multiple threats on a global scale, with varying levels of intensity and nature in different regions. Therefore, it is crucial to assess soil threats at a local level using specific indicators. Scientific indicators have been developed to accurately assess soil health, yet they can be challenging to implement at a local scale. As some stakeholders have a good knowledge of soil condition, the objective of this paper is to determine whether stakeholders' perception of soil threats can be used as a complementary indicator. The study focuses on five soil threats: erosion, artificialisation, compaction, soil organic carbon (SOC) loss, and contamination. It is based on 1,951 responses from a participatory stakeholder consultation conducted in France in 2021. We explored stakeholders’ prioritization of soil threats and elaborated perception maps at the departmental scale. We then compared stakeholders’ perception maps with scientific indicator maps per soil threats at the departmental scale. Our findings indicate that stakeholders consider artificialisation to be the most important threat in France. The spatial distribution of soil threats based on stakeholders’ perceptions and scientific indicators matches in 43% of the departments for SOC loss, and in over half of the departments for erosion (50%), artificialisation (63%), compaction (57%), and contamination (74%). However, disparities remain in certain departments and depending on the threat. These disparities can be explained by biases in the used indicators (scientific or stakeholders’ perception) or in the comparison. It can be concluded that, when these biases are taking into consideration, stakeholders’ perception can be used as an indicator for soil threats and can supplement existing scientific indicators

    Fine resolution map of top- and subsoil carbon sequestration potential in France

    No full text
    Fine resolution map of top- and subsoil carbon sequestration potential in Franc
    • …
    corecore