15 research outputs found
Recommended from our members
A transcriptomic continuum of differentiation arrest identifies myeloid interface acute leukemias with poor prognosis
Abstract: Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunophenotypically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature CD34+CD1aâCD7â subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment allocation and evaluation of therapeutic options
Recommended from our members
A transcriptomic continuum of differentiation arrest identifies myeloid interface acute leukemias with poor prognosis
Abstract: Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunophenotypically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature CD34+CD1aâCD7â subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment allocation and evaluation of therapeutic options
CBFÎČ-SMMHC Affects Genome-wide Polycomb Repressive Complex 1 Activity in Acute Myeloid Leukemia
International audienceMutations and deletions of polycomb repressive complex (PRC) components are increasingly recognized to affect tumor biology in a range of cancers. However, little is known about how genetic alterations of PRC-interacting molecules such as the core binding factor (CBF) complex influence polycomb activity. We report that the acute myeloid leukemia (AML)-associated CBFÎČ-SMMHC fusion oncoprotein physically interacts with the PRC1 complex and that these factors co-localize across the AML genome in an apparently PRC2-independent manner. Depletion of CBFÎČ-SMMHC caused substantial increases in genome-wide PRC1 binding and marked changes in the association between PRC1 and the CBF DNA-binding subunit RUNX1. PRC1 was more likely to be associated with actively transcribed genes in CBFÎČ-SMMHC-expressing cells. CBFÎČ-SMMHC depletion had heterogeneous effects on gene expression, including significant reductions in transcription of ribosomal loci occupied by PRC1. Our results provide evidence that CBFÎČ-SMMHC markedly and diversely affects polycomb recruitment and transcriptional regulation across the AML genome
Novel Intergenically Spliced Chimera, NFATC3-PLA2G15 , Is Associated with Aggressive T-ALL Biology and Outcome
International audienceLeukemias are frequently characterized by the expression of oncogenic fusion chimeras that normally a rise due to chromosomal rearrangements. Cis-splicing of adjacent genes (cis-SAGe) results in transcription of intergenically-spliced chimeric RNAs (ISCs) in the absence of structural genomic changes, and aberrant ISC expression is now recognized as a potential cancer driver. We performed high-throughput RNA-sequencing of human T-acute lymphoblastic leukemia (T-ALL)samples, and used targeted analysis pipelines to detect fusion chimeras. We identified 55 candidate T-ALL-related ISCs, with a median of 4 per patient. We performed additional in-depth characterization of the NFATC3-PLA2G15 chimera, which was expressed at variable levels in primary T-ALL cases. Experimental analysis revealed that the fusion had lower activity than wild-type NFATC3 in vitro, and that T-ALL blasts with elevated NFATC3-PLA2G15 levels had reducedtranscription of canonical NFAT pathway genes in vivo. Strikingly, we found that high expression of the NFATC3-PLA2G15 chimera in leukemic blasts correlated with aggressive disease biology in murine patient-derived T-ALL xenografts,andpoor prognosis in human T-ALLpatients treated as part of the Francophone multinational GRAALL-2003 and -2005 studies. Our results suggest that ISCs are common in T-ALL, and that expression of specific ISCs may correlate with patient outcome
Survey of allele specific expression in bovine muscle
Abstract Allelic imbalance is a common phenomenon in mammals that plays an important role in gene regulation. An Allele Specific Expression (ASE) approach can be used to detect variants with a cis-regulatory effect on gene expression. In cattle, this type of study has only been done once in Holstein. In our study we performed a genome-wide analysis of ASE in 19 Limousine muscle samples. We identified 5,658 ASE SNPs (Single Nucleotide Polymorphisms showing allele specific expression) in 13% of genes with detectable expression in the Longissimus thoraci muscle. Interestingly we found allelic imbalance in AOX1, PALLD and CAST genes. We also found 2,107 ASE SNPs located within genomic regions associated with meat or carcass traits. In order to identify causative cis-regulatory variants explaining ASE we searched for SNPs altering binding sites of transcription factors or microRNAs. We identified one SNP in the 3âUTR region of PRNP that could be a causal regulatory variant modifying binding sites of several miRNAs. We showed that ASE is frequent within our muscle samples. Our data could be used to elucidate the molecular mechanisms underlying gene expression imbalance
Recommended from our members
The cholinergic anti-inflammatory pathway inhibits inflammation without lymphocyte relay.
Peer reviewed: TrueAcknowledgements: Figures 1A, B, 6 created with BioRender.com.The magnitude of innate inflammatory immune responses is dependent on interactions between peripheral neural and immune cells. In particular, a cholinergic anti-inflammatory pathway (CAP) has been identified in the spleen whereby noradrenaline (NA) released by splenic nerves binds to Ă2-adrenergic receptors (ÎČ2-AR) on CD4+ T cells which, in turn, release acetylcholine (ACh). The binding of ACh to α7 acetylcholine receptors (α7-AChR) expressed by splenic macrophages inhibits the production of inflammatory cytokines, including tumor necrosis factor (TNF). However, the role of ACh-secreting CD4+ T-cells in the CAP is still controversial and largely based on the absence of this anti-inflammatory pathway in mice lacking T-cells (nude, FoxN1-/-). Using four conscious, non-lymphopenic transgenic mouse models, we found that, rather than acting on CD4+ T-cells, NA released by splenic nerve terminals acts directly onto ÎČ2-AR on splenic myeloid cells to exert this anti-inflammatory effect. We also show that, while larger doses of LPS are needed to trigger CAP in nude mouse strain compared to other strains, TNF production can be inhibited in these animals lacking CD4+ T-cell by stimulating either the vagus or the splenic nerve. We demonstrate that CD4+ T-cells are dispensable for the CAP after antibody-mediated CD4+ T-cell depletion in wild type mice. Furthermore, we found that NA-mediated inhibition of in vitro LPS-induced TNF secretion by human or porcine splenocytes does not require α7-AChR signaling. Altogether our data demonstrate that activation of the CAP by stimulation of vagus or splenic nerves in mice is mainly mediated by direct binding of NA to ÎČ2-AR on splenic macrophages, and suggest that the same mechanism is at play in larger species
Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation
Cell differentiation is accompanied by epigenetic changes leading to precise lineage definition and cell identity. Here we present a comprehensive resource of epigenomic data of human T cell precursors along with an integrative analysis of other hematopoietic populations. Although T cell commitment is accompanied by large scale epigenetic changes, we observed that the majority of distal regulatory elements are constitutively unmethylated throughout T cell differentiation, irrespective of their activation status. Among these, the TCRA gene enhancer (Eα) is in an open and unmethylated chromatin structure well before activation. Integrative analyses revealed that the HOXA5-9 transcription factors repress the Eα enhancer at early stages of T cell differentiation, while their decommission is required for TCRA locus activation and enforced αÎČ T lineage differentiation. Remarkably, the HOXA-mediated repression of Eα is paralleled by the ectopic expression of homeodomain-related oncogenes in T cell acute lymphoblastic leukemia. These results highlight an analogous enhancer repression mechanism at play in normal and cancer conditions, but imposing distinct developmental constraints.Work in the laboratory of S. Spicuglia was supported by recurrent funding from Institut National de la SantĂ© et de la Recherche MĂ©dicale and Aix-Marseille University and by specific grants from the European Unionâs FP7 Program (agreement 282510-BLUEPRINT), the Foundation for Cancer Research, Association pour la Recherche sur le Cancer (ARC PJA 20151203149), A*MIDEX (ANR-11-IDEX-0001-02), Plan Cancer 2015 (C15076AS), PlBio-INCA, and Equipe LabelisĂ©e Ligue contre le Cancer
Harnessing the MYB-dependent TAL1 5âsuper-enhancer for targeted therapy in T-ALL
Abstract The acquisition of genetic abnormalities engendering oncogene dysregulation underpins cancer development. Certain proto-oncogenes possess several dysregulation mechanisms, yet how each mechanism impacts clinical outcome is unclear. Using T-cell acute lymphoblastic leukemia (T-ALL) as an example, we show that patients harboring 5âsuper-enhancer (5âSE) mutations of the TAL1 oncogene identifies a specific patient subgroup with poor prognosis irrespective of the level of oncogene dysregulation. Remarkably, the MYB dependent oncogenic 5âSE can be targeted using Mebendazole to induce MYB protein degradation and T-ALL cell death. Of note Mebendazole treatment demonstrated efficacy in vivo in T-ALL preclinical models. Our work provides proof of concept that within a specific oncogene driven cancer, the mechanism of oncogene dysregulation rather than the oncogene itself can identify clinically distinct patient subgroups and pave the way for future super-enhancer targeting therapy
DNMT3A mutation is associated with increased age and adverse outcome in adult T-acute lymphoblastic leukemia
International audienceThe prognostic implications of DNMT3A genotype in T-ALL are incompletely understood. We performed comprehensive genetic and clinicobiological analyses of T-ALL patients with DNMT3A mutations treated during the GRAALL-2003 and -2005 studies. Eighteen of 198 cases (9.1%) had DNMT3A alterations. Two patients also had DNMT3A mutations in non-leukemic cell DNA, providing the first potential evidence of age-related clonal hematopoiesis in T-ALL. DNMT3A mutation was associated with older age (median 43.9 years v 29.4 years, p < 0.001), immature T-receptor genotype (53.3% v 24.4%, p = 0.016) and lower remission rates (72.2% mutated v 94.4% non-mutated, p = 0.006). DNMT3A alterations were significantly associated with worse clinical outcome, with higher cumulative incidence of relapse (CIR, HR 2.33, 95% CI 1.05-5.16, p = 0.037) and markedly poorer event-free survival (EFS, HR 3.22, 95% CI 1.81-5.72, p < 0.001) and overall survival (OS, HR 2.91, 95% CI 1.56-5.43, p = 0.001). Adjusting for age as a covariate, or restricting the analysis to patients over 40 years, who account for almost 90% of DNMT3A-mutated cases, did not modify these observations. In multivariate analysis using the risk factors that were used to stratify treatment during the GRAALL studies, DNMT3A mutation was significantly associated with shorter EFS (HR 2.33, 95% CI 1.06 - 4.04, p = 0.02). Altogether, these results identify DNMT3A genotype as a predictor of aggressive T-ALL biology. The GRAALL-2003 and -2005 studies were registered at http://www.clinicaltrials.gov as #NCT00222027 and #NCT00327678, respectively.</p
Prognostic value and oncogenic landscape of TP53 alterations in adult and pediatric T-ALL
International audienc