95 research outputs found

    Accurate Quantum Chemical Spectroscopic Characterization of Glycolic Acid: A Route Toward its Astrophysical Detection

    Get PDF
    The first step to shed light on the abiotic synthesis of biochemical building blocks, and their further evolution toward biological systems, is the detection of the relevant species in astronomical environments, including earthlike planets. To this end, the species of interest need to be accurately characterized from structural, energetic, and spectroscopic viewpoints. This task is particularly challenging when dealing with flexible systems, whose spectroscopic signature is ruled by the interplay of small- and large-amplitude motions (SAMs and LAMs, respectively) and is further tuned by the conformational equilibrium. In such instances, quantum chemical (QC) calculations represent an invaluable tool for assisting the interpretation of laboratory measurements or even observations. In the present work, the role of QC results is illustrated with reference to glycolic acid (CH2OHCOOH), a molecule involved in photosynthesis and plant respiration and a precursor of oxalate in humans, which has been detected in the Murchison meteorite but not yet in the interstellar medium or in planetary atmospheres. In particular, the equilibrium structure of the lowest-energy conformer is derived by employing the so-called semiexperimental approach. Then, accurate yet cost-effective QC calculations relying on composite post-Hartree–Fock schemes and hybrid coupled-cluster/density functional theory approaches are used to predict the structural and ro-vibrational spectroscopic properties of the different conformers within the framework of the second-order vibrational perturbation theory. A purposely tailored discrete variable representation anharmonic approach is used to treat the LAMs related to internal rotations. The computed spectroscopic data, particularly those in the infrared region, complement the available experimental investigations, thus enhancing the possibility of an astronomical detection of this molecule

    Theory Meets Experiment for Noncovalent Complexes: The Puzzling Case of Pnicogen Interactions

    Get PDF
    A gas-phase nitrogen\u2013nitrogen noncovalent interaction has been unveiled in the nitroethane\u2013trimethylamine complex in an environment free from solvent and matrix effects using rotational spectroscopy in supersonic expansion. Different quantum chemical models (NOCV/CD and NBO) agree in indicating that this interaction largely prevails over the C 12H c5 c5 c5O and C 12H c5 c5 c5N hydrogen bonds. Furthermore, a SAPT analysis shows that electrostatic and dispersion interactions play a comparable role in stabilizing the complex. The conformational landscape exploration and stationary points characterization have been performed using state-of-the-art quantum-chemical computations providing significant insights on structure determination

    Understanding the complex organisational processes that help and hinder creativity and innovation

    Get PDF
    This study looks at the topics of creativity and innovation and how they are experienced as ordinary, everyday work. In business publications there is much hype and hope around the words “creativity” and “innovation”, but there is also a limited understanding of how creativity and innovation are enacted in organisations. Consequently, academics have stressed the need for ‘opening the black box’ of the firm and understanding how innovation really works (Birdi et al, 2003). This research uses the Complex Responsive Processes approach to understand the ordinary, everyday experiences of people involved in work which was novel for the organisations concerned. I selected three organisational cases from the health and education sectors. I selected these because, in each case, people were working on complex challenges which had no single, obvious solution and which required the generation and development of new and useful ideas. The research makes a novel contribution to knowledge in three ways. First, it has been unusual in that it has extended the application of complex responsive processes to understand the processes which impact on creativity and innovation in the health and education sectors. While complex responsive processes thinking has been applied to these sectors before, to my knowledge, this is the first time it has been applied to understand processes impacting on creativity and innovation in these sectors. Second, this research finds a pattern of dynamics between trust and a paradoxical concept of diversity, comprising both sufficient difference and sufficient common-ground between organizational members. In this research, trust was a necessary foundation for the exploration of ideas. However, for risks to be taken and ideas to be implemented, in contexts of high uncertainty and risk, trust alone was insufficient. The quality of conversational life flourished where both trust and diversity were present. Finally, this research makes a methodological contribution through using Stacey’s five areas for focusing attention as a conceptual framework. The use of this framework helps provide a depth of compelling detail and insights which would not have been obtained through traditional lenses from the domains of creativity and innovation. This is the first time this framework for focusing attention has been applied in this way to understanding creativity and innovation in empirical settings.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    An integrated experimental and quantum-chemical investigation on the vibrational spectra of chlorofluoromethane

    Get PDF
    The vibrational analysis of the gas-phase infrared spectra of chlorofluoromethane (CH2ClF, HCFC-31) was carried out in the range 200-6200 cm(-1). The assignment of the absorption features in terms of fundamental, overtone, combination, and hot bands was performed on the medium-resolution (up to 0.2 cm(-1)) Fourier transform infrared spectra. From the absorption cross section spectra accurate values of the integrated band intensities were derived and the global warming potential of this compound was estimated, thus obtaining values of 323, 83, and 42 on a 20-, 100-, and 500-year horizon, respectively. The set of spectroscopic parameters here presented provides the basic data to model the atmospheric behavior of this greenhouse gas. In addition, the obtained vibrational properties were used to benchmark the predictions of state-of-the-art quantum-chemical computational strategies. Extrapolated complete basis set limit values for the equilibrium geometry and harmonic force field were obtained at the coupled-cluster singles and doubles level of theory augmented by a perturbative treatment of triple excitations, CCSD(T), in conjunction with a hierarchical series of correlation-consistent basis sets (cc-pVnZ, with n = T, Q, and 5), taking also into account the core-valence correlation effects and the corrections due to diffuse (aug) functions. To obtain the cubic and quartic semi-diagonal force constants, calculations employing second-order Moller-Plesset perturbation (MP2) theory, the double-hybrid density functional B2PLYP as well as CCSD(T) were performed. For all anharmonic force fields the performances of two different perturbative approaches in computing the vibrational energy levels (i.e., the generalized second order vibrational treatment, GVPT2, and the recently proposed hybrid degeneracy corrected model, HDCPT2) were evaluated and the obtained results allowed us to validate the spectroscopic predictions yielded by the HDCPT2 approach. The predictions of the deperturbed second-order perturbation approach, DVPT2, applied to the computation of infrared intensities beyond the double-harmonic approximation were compared to the accurate experimental values here determined. Anharmonic DFT and MP2 corrections to CCSD(T) intensities led to a very good agreement with the absorption cross section measurements over the whole spectral range here analysed. (C) 2013 AIP Publishing LLC

    High angular resolution gravitational wave astronomy

    Get PDF
    Since the very beginning of astronomy the location of objects on the sky has been a fundamental observational quantity that has been taken for granted. While precise two dimensional positional information is easy to obtain for observations in the electromagnetic spectrum, the positional accuracy of current and near future gravitational wave detectors is limited to between tens and hundreds of square degrees, which makes it extremely challenging to identify the host galaxies of gravitational wave events or to confidently detect any electromagnetic counterparts. Gravitational wave observations provide information on source properties and distances that is complementary to the information in any associated electromagnetic emission and that is very hard to obtain in any other way. Observing systems with multiple messengers thus has scientific potential much greater than the sum of its parts. A gravitational wave detector with higher angular resolution would significantly increase the prospects for finding the hosts of gravitational wave sources and triggering a multi-messenger follow-up campaign. An observatory with arcminute precision or better could be realised within the Voyage 2050 programme by creating a large baseline interferometer array in space and would have transformative scientific potential. Precise positional information of standard sirens would enable precision measurements of cosmological parameters and offer new insights on structure formation; a high angular resolution gravitational wave observatory would allow the detection of a stochastic background and resolution of the anisotropies within it; it would also allow the study of accretion processes around black holes; and it would have tremendous potential for tests of modified gravity and the discovery of physics beyond the Standard Model

    The Italian National Project of Astrobiology-Life in Space-Origin, Presence, Persistence of Life in Space, from Molecules to Extremophiles

    Get PDF
    The \u2018\u2018Life in Space\u2019\u2019 project was funded in the wake of the Italian Space Agency\u2019s proposal for the development of a network of institutions and laboratories conceived to implement Italian participation in space astrobiology experiments

    Science with the space-based interferometer LISA. IV: probing inflation with gravitational waves

    Get PDF
    We investigate the potential for the LISA space-based interferometer to detect the stochastic gravitational wave background produced from different mechanisms during inflation. Focusing on well-motivated scenarios, we study the resulting contributions from particle production during inflation, inflationary spectator fields with varying speed of sound, effective field theories of inflation with specific patterns of symmetry breaking and models leading to the formation of primordial black holes. The projected sensitivities of LISA are used in a model-independent way for various detector designs and configurations. We demonstrate that LISA is able to probe these well-motivated inflationary scenarios beyond the irreducible vacuum tensor modes expected from any inflationary background.Comment: 53 pages, 18 figures; v2: minor changes to match published versio

    What are the spectroscopic properties of HFC-32? Answers from DFT

    No full text
    Although coupled cluster theory coupled to large basis sets can reach impressive accuracies for thermochemical and spectroscopic properties, it is still limited to small/medium sized molecules. Density functional theory (DFT) represents the working option for systems composed of hundreds to thousands heavy atoms. In this context, investigations are required aimed at characterizing the performances of the different density functionals (DF). This work focuses on the study of DFT performances in the prediction of spectroscopic properties, with particular attention to the vibrational problem, by focusing on the CH2F2 molecule as a test case. An extensive and systematic investigation is performed on several DFT model chemistries by testing their predictions of molecular constants and vibrational frequencies and intensities against CCSD(T)/ aug-cc-pCVQZ data. B3LYP, B3PW91, B97-1, PBE0, TPSSh, M05, M05-2X, and B2PLYP DFs are used in conjunction with a variety of basis sets. Anharmonic frequencies are derived from the VPT2 treatment of anharmonic- and hybrid CCSD(T)/DFTforce fields
    • 

    corecore