135 research outputs found

    Attitude Design for the LADEE Mission

    Get PDF
    The Lunar Atmosphere and Dust Environment Explorer (LADEE) satellite successfully completed its 148-day science investigation in a low-altitude, near-equatorial lunar orbit on April 18, 2014. The LADEE spacecraft was built, managed and operated by NASA's Ames Research Center (ARC). The Mission Operations Center (MOC) was located at Ames and was responsible for activity planning, command sequencing, trajectory and attitude design, orbit determination, and spacecraft operations. The Science Operations Center (SOC) was located at Goddard Space Flight Center and was responsible for science planning, data archiving and distribution. This paper details attitude design and operations support for the LADEE mission. LADEE's attitude design was shaped by a wide range of instrument pointing requirements that necessitated regular excursions from the baseline one revolution per orbit "Ram" attitude. Such attitude excursions were constrained by a number of flight rules levied to protect instruments from the Sun, avoid geometries that would result in simultaneous occlusion of LADEE's two star tracker heads, and maintain the spacecraft within its thermal and power operating limits. To satisfy LADEE's many attitude requirements and constraints, a set of rules and conventions was adopted to manage the complexity of this design challenge and facilitate the automation of ground software that generated pointing commands spanning multiple days of operations at a time. The resulting LADEE Flight Dynamics System (FDS) that was developed used Visual Basic scripts that generated instructions to AGI's Satellite Tool Kit (STK) in order to derive quaternion commands at regular intervals that satisfied LADEE's pointing requirements. These scripts relied heavily on the powerful "align and constrain" capability of STK's attitude module to construct LADEE's attitude profiles and the slews to get there. A description of the scripts and the attitude modeling they embodied is provided. One particular challenge analysts faced was in the design of LADEE maneuver attitudes. A flight rule requiring pre-maneuver verification of in-flight maneuver conditions by ground operators prior to burn execution resulted in the need to accommodate long periods in the maneuver attitude. This in turn complicated efforts to satisfy star tracker interference and communication constraints in lunar orbit. In response to this challenge, a graphical method was developed and used to survey candidate rotation angles about the thrust vector. This survey method is described and an example of its use on a particular LADEE maneuver is discussed. Finally, the software and methodology used to satisfy LADEE's attitude requirements are also discussed in the context of LADEE's overall activity planning effort. In particular, the way in which strategic schedules of instrument and engineering activities were translated into actual attitude profiles at the tactical level, then converted into precise quaternion commands to achieve those pointing goals is explained. In order to reduce the risk of time-consuming re-planning efforts, this process included the generation of long-term projections of constraint violation predictions for individual attitude profiles that could be used to establish keep-out time-frames for particular attitude profiles. The challenges experienced and overall efficacy of both the overall LADEE ground system and the attitude components of the Flight Dynamics System in meeting LADEE's varied pointing requirements are discussed

    Transiting Exoplanet Survey Satellite (TESS) Flight Dynamics Commissioning Results and Experiences

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) will perform the first-ever spaceborne all-sky exoplanet transit survey and is the first primary-mission application of a lunar-resonant orbit. Launched on April 18, 2018, TESS completed a two-month commissioning phase consisting of three phasing loops followed by a lunar flyby and a final maneuver to achieve resonance. During the mission orbit, no further station-keeping maneuvers are planned or required. NASA Goddard Space Flight Center is performing flight dynamics operations for the mission. This paper covers the design, implementation, and results from TESS commissioning, including the projected performance of the final mission orbit

    Landings, vol. 31, no. 6

    Get PDF
    Landings content emphasizes science, history, resource sustainability, economic development, and human interest stories related to Maine\u27s lobster industry. The newsletter emphasizes lobstering as a traditional, majority-European American lifeway with an economic and social heritage unique to the coast of Maine. The publication focuses how ongoing research to engage in sustainable, non-harmful, and non-wasteful commercial fishing practices benefit both the fishery and Maine\u27s coastal legacy. For more information, please visit the Maine Lobstermen’s Community Alliance (MLCA) website

    Transiting Exoplanet Survey Satellite (TESS) Flight Dynamics Commissioning Results and Experiences

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) will perform the first-ever spaceborne all-sky exoplanet transit survey and is the first primary-mission application of a lunar-resonant orbit. Launched on April 18, 2018, TESS completed a two-month commissioning phase consisting of three phasing loops followed by a lunar flyby and a final maneuver to achieve resonance. During the mission orbit, no further station-keeping maneuvers are planned or required. NASA Goddard Space Flight Center is performing flight dynamics operations for the mission. This paper covers the design, implementation, and results from TESS commissioning, including the projected performance of the final mission orbit

    The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass

    Get PDF
    Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders

    Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection

    Get PDF
    Chronic infections are an increasing problem due to the aging population and the increase in antibiotic resistant organisms. Therefore, understanding the host-pathogen interactions that result in chronic infection is of great importance. Here, we investigate the molecular basis of chronic bacterial cystitis. We establish that introduction of uropathogenic E. coli (UPEC) into the bladders of C3H mice results in two distinct disease outcomes: resolution of acute infection or development of chronic cystitis lasting months. The incidence of chronic cystitis is both host strain and infectious dose-dependent. Further, development of chronic cystitis is preceded by biomarkers of local and systemic acute inflammation at 24 hours post-infection, including severe pyuria and bladder inflammation with mucosal injury, and a distinct serum cytokine signature consisting of elevated IL-5, IL-6, G-CSF, and the IL-8 analog KC. Mice deficient in TLR4 signaling or lymphocytes lack these innate responses and are resistant, to varying degrees, to developing chronic cystitis. Treatment of C3H mice with the glucocorticoid anti-inflammatory drug dexamethasone prior to UPEC infection also suppresses the development of chronic cystitis. Finally, individuals with a history of chronic cystitis, lasting at least 14 days, are significantly more susceptible to redeveloping severe, chronic cystitis upon bacterial challenge. Thus, we have discovered that the development of chronic cystitis in C3H mice by UPEC is facilitated by severe acute inflammatory responses early in infection, which subsequently are predisposing to recurrent cystitis, an insidious problem in women. Overall, these results have significant implications for our understanding of how early host-pathogen interactions at the mucosal surface determines the fate of disease

    Using Satellite Tracking to Optimize Protection of Long-Lived Marine Species: Olive Ridley Sea Turtle Conservation in Central Africa

    Get PDF
    Tractable conservation measures for long-lived species require the intersection between protection of biologically relevant life history stages and a socioeconomically feasible setting. To protect breeding adults, we require knowledge of animal movements, how movement relates to political boundaries, and our confidence in spatial analyses of movement. We used satellite tracking and a switching state-space model to determine the internesting movements of olive ridley sea turtles (Lepidochelys olivacea) (n = 18) in Central Africa during two breeding seasons (2007-08, 2008-09). These movements were analyzed in relation to current park boundaries and a proposed transboundary park between Gabon and the Republic of Congo, both created to reduce unintentional bycatch of sea turtles in marine fisheries. We additionally determined confidence intervals surrounding home range calculations. Turtles remained largely within a 30 km radius from the original nesting site before departing for distant foraging grounds. Only 44.6 percent of high-density areas were found within the current park but the proposed transboundary park would incorporate 97.6 percent of high-density areas. Though tagged individuals originated in Gabon, turtles were found in Congolese waters during greater than half of the internesting period (53.7 percent), highlighting the need for international cooperation and offering scientific support for a proposed transboundary park. This is the first comprehensive study on the internesting movements of solitary nesting olive ridley sea turtles, and it suggests the opportunity for tractable conservation measures for female nesting olive ridleys at this and other solitary nesting sites around the world. We draw from our results a framework for cost-effective protection of long-lived species using satellite telemetry as a primary tool

    Activation of latent human GDF9 by a single residue change (Gly(391)Arg) in the mature domain

    Get PDF
    Growth differentiation factor 9 (GDF9) controls granulosa cell growth and differentiation during early ovarian folliculogenesis and regulates cumulus cell function and ovulation rate in the later stages of this process. Similar to other TGF-β superfamily ligands, GDF9 is secreted from the oocyte in a noncovalent complex with its prodomain. In this study, we show that prodomain interactions differentially regulate the activity of GDF9 across species, such that murine (m) GDF9 is secreted in an active form, whereas human (h) GDF9 is latent. To understand this distinction, we used site-directed mutagenesis to introduce nonconserved mGDF9 residues into the pro- and mature domains of hGDF9. Activity-based screens of the resultant mutants indicated that a single mature domain residue (Gly³⁹¹) confers latency to hGDF9. Gly³⁹¹ forms part of the type I receptor binding site on hGDF9, and this residue is present in all species except mouse, rat, hamster, galago, and possum, in which it is substituted with an arginine. In an adrenocortical cell luciferase assay, hGDF9 (Gly³⁹¹Arg) had similar activity to mGDF9 (EC₅₀ 55 ng/ml vs. 28 ng/ml, respectively), whereas wild-type hGDF9 was inactive. hGDF9 (Gly³⁹¹Arg) was also a potent stimulator of murine granulosa cell proliferation (EC₅₀ 52 ng/ml). An arginine at position 391 increases the affinity of GDF9 for its signaling receptors, enabling it to be secreted in an active form. This important species difference in the activation status of GDF9 may contribute to the variation observed in follicular development, ovulation rate, and fecundity between mammals.Courtney M. Simpson, Peter G. Stanton, Kelly L. Walton, Karen L. Chan, Lesley J. Ritter, Robert B. Gilchrist, and Craig A. Harriso
    corecore