4,398 research outputs found

    Characterizing 15 Years of Saharan-like, Dry, Well-Mixed Air Layers in North Africa

    Get PDF
    The Saharan Air Layer (SAL) is a dry, well-mixed layer (WML) of warm and sometimes dusty air of nearly constant water vapor mixing ratio generated by the intense surface heating and strong, dry convection in the Sahara Desert, which has notable downstream impacts on the surface energy balance, organized convective system development, seasonal precipitation, and air quality. Characterizing both WMLs and SALs from the existing rawinsonde network has proven challenging because of its sparseness and inconsistent data reporting. Spurred on by this challenge, we previously created a detection methodology and supporting software to automate the identification and characterization of WMLs from multiple data sources including rawinsondes, remote sensing platforms, and model products. We applied our algorithm to each dataset at both its native and at a common (most coarse data product) vertical resolution to detect WMLs and their characteristics (temperature, mixing ratio, AOD, etc.) at each of the 53 rawinsonde launch sites in north Africa

    Own attractiveness and perceived relationship quality shape sensitivity in women’s memory for other men on the attractiveness dimension

    Get PDF
    Although recent work suggests that opposite-sex facial attractiveness is less salient in memory when individuals are in a committed romantic relationship, romantic relationship quality can vary over time. In light of this, we tested whether activating concerns about romantic relationship quality strengthens memory for attractive faces. Partnered women were exposed briefly to faces manipulated in shape cues to attractiveness before either being asked to think about a moment of emotional closeness or distance in their current relationship. We measured sensitivity in memory for faces as the extent to which they recognized correct versions of studied faces over versions of the same person altered to look either more or less-attractive than their original (i.e. studied) version. Contrary to predictions, high relationship quality strengthened hit rate for faces regardless of the sex or attractiveness of the face. In general, women’s memories were more sensitive to attractiveness in women, but were biased toward attractiveness in male faces, both when responding to unfamiliar faces and versions of familiar faces that were more attractive than the original male identity from the learning phase. However, findings varied according to self-rated attractiveness and a psychometric measure of the quality of their current relationship. Attractive women were more sensitive to attractiveness in men, while their less-attractive peers had a stronger bias to remember women as more-attractive and men as less-attractive than their original image respectively. Women in better-quality romantic relationships had stronger positive biases toward, and false memories for, attractive men. Our findings suggest a sophisticated pattern of sensitivity and bias in women’s memory for facial cues to quality that varies systematically according to factors that may alter the costs of female mating competition (‘market demand’) and relationship maintenance

    Editorial

    Get PDF

    Confirmation and Analysis of Circular Polarization from Sagittarius A*

    Full text link
    Recently Bower et al. (1999b) have reported the detection of circular polarization from the Galactic Center black hole candidate, Sagittarius A*. We provide an independent confirmation of this detection, and provide some analysis on the possible mechanisms.Comment: 14 pages, to appear in Astrophysical Journal Letter

    The UK needs an open data portal dedicated to coastal flood and erosion hazard risk and resilience

    Get PDF
    In the UK, coastal flooding and erosion are two of the primary climate-related hazards to communities, businesses, and infrastructure. To better address the ramifications of those hazards, now and into the future, the UK needs to transform its scattered, fragmented coastal data resources into a systematic, integrated portal for quality-assured, publicly accessible open data. Such a portal would support analyses of coastal risk and resilience by hosting, in addition to data layers for coastal flooding and erosion, a diverse array of spatial datasets for building footprints, infrastructure networks, land use, population, and various socio-economic measures and indicators derived from survey and census data. The portal would facilitate novel combinations of spatial data layers to yield scientifically, societally, and economically beneficial insights into UK coastal systems

    Interaction Effects in a One-Dimensional Constriction

    Full text link
    We have investigated the transport properties of one-dimensional (1D) constrictions defined by split-gates in high quality GaAs/AlGaAs heterostructures. In addition to the usual quantized conductance plateaus, the equilibrium conductance shows a structure close to 0.7(2e2/h)0.7(2e^2/h), and in consolidating our previous work [K.~J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996)] this 0.7 structure has been investigated in a wide range of samples as a function of temperature, carrier density, in-plane magnetic field B∥B_{\parallel} and source-drain voltage VsdV_{sd}. We show that the 0.7 structure is not due to transmission or resonance effects, nor does it arise from the asymmetry of the heterojunction in the growth direction. All the 1D subbands show Zeeman splitting at high B∥B_{\parallel}, and in the wide channel limit the gg-factor is ∣g∣≈0.4\mid g \mid \approx 0.4, close to that of bulk GaAs. As the channel is progressively narrowed we measure an exchange-enhanced gg-factor. The measurements establish that the 0.7 structure is related to spin, and that electron-electron interactions become important for the last few conducting 1D subbands.Comment: 8 pages, 7 figures (accepted in Phys. Rev. B

    Abrasive machining with MQSL

    Get PDF
    Grinding and polishing of engineered components are critical aspects of the precision manufacturing of high performance, quality assured products. Elevated process temperatures, however, are a common and for the most part undesirable feature of the grinding process. High process temperatures increase the likelihood of microstructural change within the immediate subsurface layer and are detrimental to the strength and performance of the manufactured products. Increasing processing costs and tighter environmental legislation are encouraging industry to seek innovative fluid application techniques as significant savings in production can be achieved. In this context, and with sponsorship from three industrial partners, namely; Fives Cinetic, Fuchs Lubricants plc and Southside Thermal Sciences Ltd, and also from the Engineering and Physical Science Research Council (EPSRC), this research aimed to develop an understanding of Minimum Quantity Solid Lubrication (MQSL) as a method for abrasive machining, with particular reference to the control of surface temperatures. Improving the lubricity of Minimum Quantity Lubrication (MQL) fluids reduces the frictional source of process heat and controls the finish surface temperature. The application of effective solid lubricants is known as Minimum Quantity Solid Lubrication (MQSL). Molybdenum Disulphide (MoS2), Calcium Fluoride (CaF2), and hexagonal Boron Nitride (hBN) were compared against a semi-synthetic water soluble machining fluid (Fuchs EcoCool). A series of Taguchi factorial experimental trials assessed their performances through ANOVA (ANalysis Of VAriance) statistical method. The hBN produced the lowest grinding temperatures of the solid lubricants tested, although they still remained higher than those achieved using the EcoCool control. The reduction of the machining fluid enabled a Charged Coupled Device (CCD) sensor to be fitted into the grinding machine. The recorded movement in the emitted spectrum from the grinding chips was compared to experimental and modelled process temperatures. This showed that the wavelengths of the chip light correlated to the temperature of the finish grinding surface. This greatly contributed to determining the feasibility of constructing a non-destructive, non-invasive, thermally-adaptive control system for controlling grinding surface temperatures.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Electron-electron interaction effects in quantum point contacts

    Get PDF
    We consider electron-electron interaction effects in quantum point contacts on the first quantization plateau, taking into account all scattering processes. We compute the low-temperature linear and nonlinear conductance, shot noise, and thermopower, by perturbation theory and a self-consistent nonperturbative method. On the conductance plateau, the low-temperature corrections are solely due to momentum-nonconserving processes that change the relative number of left- and right-moving electrons. This leads to a suppression of the conductance for increasing temperature or voltage. The size of the suppression is estimated for a realistic saddle-point potential, and is largest in the beginning of the conductance plateau. For large magnetic field, interaction effects are strongly suppressed by the Pauli principle, and hence the first spin-split conductance plateau has a much weaker interaction correction. For the nonperturbative calculations, we use a self-consistent nonequilibrium Green's function approach, which suggests that the conductance saturates at elevated temperatures. These results are consistent with many experimental observations related to the so-called 0.7 anomaly

    A global view of the oncogenic landscape in nasopharyngeal carcinoma : an integrated analysis at the genetic and expression levels

    Get PDF
    Previous studies have reported that the tumour cells of nasopharyngeal carcinoma (NPC) exhibit recurrent chromosome abnormalities. These genetic changes are broadly assumed to lead to changes in gene expression which are important for the pathogenesis of this tumour. However, this assumption has yet to be formally tested at a global level. Therefore a genome wide analysis of chromosome copy number and gene expression was performed in tumour cells micro-dissected from the same NPC biopsies. Cellular tumour suppressor and tumour-promoting genes (TSG, TPG) and Epstein-Barr Virus (EBV)-encoded oncogenes were examined. The EBV-encoded genome maintenance protein EBNA1, along with the putative oncogenes LMP1, LMP2 and BARF1 were expressed in the majority of NPCs that were analysed. Significant downregulation of expression in an average of 76 cellular TSGs per tumour was found, whilst a per-tumour average of 88 significantly upregulated, TPGs occurred. The expression of around 60% of putative TPGs and TSGs was both up-and down-regulated in different types of cancer, suggesting that the simplistic classification of genes as TSGs or TPGs may not be entirely appropriate and that the concept of context-dependent onco-suppressors may be more extensive than previously recognised. No significant enrichment of TPGs within regions of frequent genomic gain was seen but TSGs were significantly enriched within regions of frequent genomic loss. It is suggested that loss of the FHIT gene may be a driver of NPC tumourigenesis. Notwithstanding the association of TSGs with regions of genomic loss, on a gene by gene basis and excepting homozygous deletions and high-level amplification, there is very little correlation between chromosomal copy number aberrations and expression levels of TSGs and TPGs in NPC
    • …
    corecore