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MINIMUM COST DESIGN OF COMPOSITE FLOOR SYSTEMS 

USING COLD FORMED STEEL DECKING 

BY 

J, 1, NICHOLLS 1 AND A, T, MEROVICH 2 

~11NJMUM COST DESIGN OF COMPOSITE 

FLOOR SYSTEMS USING COLD CORMED STEEL DECKING 

Introduction 

In the last ten years structural designers have been giving more 

and more attention to the field of design optimization. Initially, the 

emphasis was placed on minimum weight design, perhaps as a continuation 

of previous work done in the aircraft industry. Later however, this 

emphasis has changed to minimum cost design wherein not only material 

costs but also fabrication and erection costs are included. Minimum 

cost is recognized as the significant factor in structural design 

opti01ization. 

There are three basic optimization procedures, each having 

specific qualities in reference to the type of problem they are best 

suited to solve. All three of these will now be discussed in terms of 

the proposed investioation. These three basic procedures are as follows: 

(1) Closed form solution procedures (such as Linear Programming). 

(2) Gradient Procedures. 

(3) Grid Search Procedures. 

In the closed form procedures a direct solution is obtainable 

provided a set of initial conditions is r.~et. For example, in the Linear 

Programming algorithm all constraints and the objective function must be 

linear in the decision variables. All decision variables however are 

assumeJ to be continuous functions. This is not a practical lil71itation. 

The gradient procedures suffer primarily fro~ the fact that they cannot 

in general produce an optimal solution which is known to be the global 

optimum. Various methods of overcoming this limitation have been tried, 

prir.~e amon<JSt which is the procedure of restarting the procedure at 

different initial points. 1·/hile perhaps giving a sense of security 

relating to a solution developed from several starting points, this by 

no means def1nes the global opti~um. This technique is simple to program 

ho>~ever and a mdification of this developed by Goble et al (1)*, (2) 

allm-1s the incorporation of practical size limitations. 

Finally, the grid search techniaue assures us, by the very nature 

of the procedure, that the global opti~al solution 1·1ill be developed 

provided all possible combinations are considered. Obviously, for large 

rrobler11S 1·1herein a large number of trials are to be considered, this can 

lead to an extensive computational effort. This fact alone has, in the 

opinion of the authors, been a major reason against its use in the past. 

With the increase in the efficiency and speed of the digital computer 

at the present ti"e however this may no longer be a critical factor. 

Certainly procedures such as critcal path method and dynamic progralll!ling 

which are showing very prominently in the literature at the present time 

rely on basic algorithms not unlike Grid Search procedures. Further, 

the methodo 1 ogy of this procedure incorporates a non-continuous spectrum 

of points for the decision variables. This investigation used the grid 

* /lumbers in parentheses refer to items in the Reference section. 
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search procedure. For the problem considered very short operational 

times and small associated computer costs were involved in its use. This 

last point justified its use for the proposed investigation, and is a 

factor which must be taken into consideration if the practicing engineering 

profession will be using the end product. 

A definition of the problem attempted may now be written as follows: 

Using the Grid Search Procedure determine the optimal cost 

configuration for a composite floor system in a steel framed multi-story 

building given the initial bay size, the design loading and specific 

engineering properties of the cold formed decking elements, the rolled 

beam sizes and the concrete slab. 

In this investigation 16 of the most c0111110nly used H.H. Robertson 

Q-Lock cold formed decking sections were used, and 28 rolled.beam sizes 

were considered as sufficient to develop the necessary load carrying 

requirements. These sections are listed in Table l. It should be noted 

however that this is not a restriction on the program developed. Addi­

tional beam sizes and/or different cold formed decking configurations may 

be used almost directly in the existing program. 

Solution Procedure 

A computerized procedure has been evolved for the determination 

of the optimal configuration. This procedure has five basic steps. 

Define an acceptable framing scheme. 

Select an admissible cold formed decking element and a 

concrete s 1 ab thickness. 

(a) Select an admissible rolled beam size for non-composite 

action. 

(b) Select an admissible rolled be•m size for composite 

action. 

Table 1 

Listing of Cold Formed Decking and Rolled Beam Sections 
Used in the Computer Investigation 

Cold Formed Decking* 

QL- 3 -22 

QL- 3 -20 

QL- 3 -18 

QL- 3 -16 

QL-ukx-18/18 

QL-ukx-18/16 

QL-ukx-16/16 

QL-ukx-16/14 

QL-21 -22 

QL-21 -20 

QL-21 -18 

QL-21 -16 

QL-nkx-18/18 

QL-nkx-18/16 

QL-nkx-16/16 

QL-nkx-16/14 

• See Reference 
•• See Reference l4) 

7) 

Rolled Beams** 

W 12 X 14 

W 8 X 15 

Wl2xl6.5 

W 8 X 17 

W 10 X 17 

W 10 X 19 

W 12 X 19 

W 8 X 20 

W 10 X 21 

W 12 X 22 

W 14 X 22 

W 8 X 24 

W 10 X 25 

W 14 X 26 

W 16 X 26 

W 12 X 27 

W 14 X 30 

W 16 X 31 

W 14 X 34 

W 18 X 35 

W 16 X 36 

W 16 X 40 

W 18 X 40 

W 21 X 44 

W 21 X 49 

W 18 X 50 

W 18 X 55 

W 21 X 55 
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4 Determine the required fireproofing for both the cold formed 

decking and the rolled beam(s) and calculate the cost of the 

total design. 

5 Select the minimum cost of all acceptable design configurations. 

A flow chart illustrating these five steps and their interaction 

is given in Figure 1. The five basic steps will now be discussed 

individually. 

Step 1: Framing scheme selection 

The selection of an acceptable framing scheme is made on the 

basis of providing a span length for the cold formed decking which is 

within the range of standard lengths commercially produced. The deter­

mination of this span length is made by dividing the bay length B by n, 

where n = 1, 2, ... , until this quotient lies within the range of 

commercially produced 1 engths. 

Step 2: Cold formed decking and slab thickness selection 

This step requires an iterative search to be carried out to 

determine a cold formed decking/concrete slab thickness combination 

which would not violate limitations on bending stress, shear stress 

and deflection, etc. The allowable values for stress and deflection are 

obtained from trade literature (3), (4). In addition to the computation 

of acceptable stress and deflection values both shored and unshored spans 

are considered. When required, shoring is provided only at midspan. 

This is a practical 1 imitation. A flow chart of this step is given in 

Figure 2. If no acceptable combination of cold formed decking and 

concrete slab thickness ·can be found, the program returns to Step 1 where 

a new acceptable framing scheme is selected, provided one exists. 

(See Figure 1) 

Step 3: (a) Rolled beam selection/non-composite 

All 28 wide flange beam sizes including specific engineering 

properties pertinent to the stress and deflection calculations were stored 

in the computer. Flexural stress and midspan deflection were calculated 

for the selected beams assuming non-composite action. In all cases, the 

beams were considered to be pinned at each end thus giving maximum 

flexural stress and maximum deflection at midspan. If a beam Is found 

that has flexural stresses and deflections less than the maximum 

allowable (6) the program proceeds to Step 4. If no acceptable beam 

size is found, the program proceeds to Step 3 (b). 

Step 3: (b) Rolled Beam Selection/composite 

lf the cold formed decking type and concrete slab thickness 

permits composite action to be used with the rolled beam (3) then the 

program will attempt to find a rolled beam capable of supporting the 

floor system. The selection of this beam is subject to flexural stress 

and deflection limitations (6) that are imposed on the behavior of the 

composite cold formed decking/slab/beam system under 1 ive and dead load 

conditions. If no beams can be found that will satisfy these requirements 

or, if the cold formed decking and concrete slab thickness do not permit 

composite action the program returns to Step 2. If however an acceptable 

beam size is found, the number of shear studs, and their spacing necessary 

to facilitate composite action is determined by conventional design 

procedures (6), (7). If the resulting spacing of the shear studs proves 

to be very large (>72") or very small (<6") the program considers composite 

action either practically or structurally infeasible. For shur stud 

spacings greater than 72 inches the program returns to Step 2 since 

composite action is not economically worth considering. For spacings 

less than 6 inches the studs are too close and the program returns to 

Step 2. If an acceptable beam size is found that permits an adequate 

shear stud spacing the program proceeds to Step 4. 

Step 4: Fireproofing Determination and Total Design Cost 

In determining the amount of sprayed-on fireproofing that is 

necessary for a given design to develop a 2 hour fire rating, the program 

multiplies the bay size by an average fireproofing thickness. This 

fireproofing thickness has been abstracted from test Information (8) 

which details the exact fireproofing application to obtain a 2 hour 

fire rating. The fireproofing required by the beam is determined in\1 

similar manner. With the amount of fireproofing determined a complete 

design has been evolved and only its cost remains unknown. The total 

cost of the completed design is calculated by summing a series of subcosts 

each of which represents some aspect of the design. These subcosts 

include both material costs plus an allowance for labor and erection 

costs and can be listed as follows: 

j. 
I 
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1. The cost of the cold formed decking 

2. The cost of the concrete 

3. The cost of the rolled beams 

4. The cost of providing temporary mid-span shoring of the 

decking - if necessary 

5. The cost of temperature mesh in the slab 

6. The cost of providing composite action between the slab/decking 

system and the rolled s tee 1 beams 

7. The cost of providing the necessary fireproofing 

Step 4. 

·--·· ------*---------- -, 
{S"tep 1. Framing Scheme Selectio~_J 

jstep 2~;;: and Slab ThicknessL 

L Select!~-"---·----' 

Fireproofing Determination 
and Total Design Cost 

Rolled Beam 
Se 1 ec ti on/Compos 1 te 

'-------

Minimum Cost Design 
Selection 

Figure 1 

Flow Diagra11 of Sequencing 
of the COIIIPuter Program 



Decking Slab Thickness Information 

QL-3-22 
QL-3-22 

2.0 
2.5 

XXX XX 
XXX XX 

_____ ...L._ __ 

··""*-· -
Admissibility ·1. 

Check I 
Stress and Deflection 

1 Checks with Sharing 

--- --~-----
. Acceptable Decking and I 

Slab Thickness 
.. - -

Figure 2 

Flow Diagram of Computer Sequencing 
of Step 1 of the Computer Program 

With the total cost determined the program returns to Step 2 to 

generate another design configuration for the framing scheme under 

consideration. When all such designs have been generated and casted 

the program proceeds to Step 5. 

Step 5: i1inimum Cost Design Selection 

At this point all possible acceptable designs have been generated, 

casted and stored in the computer. To find the required optimal design 

the individual costs generated in Step 4 are scanned to find the minimum. 

The program will report this design configuration as an optimal one for 

the framing schene being considered. The program wi 11 then return to 

Step 1 and reinitiate the design cycle for another acceptable framing 

scheJ:1e. l·lhen the point is reached at which no further acceptable framing 

schenes can be found the solution of the problem is complete and the 

program terminates operation. 

Results and Discussion 

Using material, labor, and erection costs related to the Seattle 

area a total of 35 designs were run on the program. The parameters 

which were changed in these computer runs were the bay width and bay 

length. The live load used was 100 p.s.f. because this floor loading is 

the most widely used loading for office buildings of the size being 

considered. The results of these trials have been plotted in Figure 3 

where cost contours have been plotted to indicate relative bay size costs 

for varying A and B values. The designs evolved showed some repetition 

in certain areas, and these areas are shown shaded in Figure 3. The 

repeated designs in these shaded areas are defined as follows: 

AA - OL-3-22 cold formed decking 

4. 5 inches of hard rock concrete 

Composite action 

Beam size varies. 

AAX - Same as AA except 3" of hardrock concrete and fireproofing 

required. 

- QL-21-22 cold formed decking 

3. 25 inches of 1 ight-weight concrete 

rlo composite action 

Beam size varies. 

ex - Same as C except 4.0 inches of light-weight concrete. 

NOTE: 

D - QL-21-22 cold formed decking 

4. 5 1 nches of hard rock concrete 

No composite action 

Beam size varies. 

(1) Weight of hardrock concrete • 145 lb./cu.ft. 

Weight of light-weight concrete • 100 lb./cu.ft. 

(2) Shoring was required for all these design selections 

(3) No fireproofing of the cold formed decking for designs AA, 

C and D is required. 

Surprisingly for the wide range of A and B considered, the lightest 

gaged cold formed decking appeared in all designs. Without shoring, the 

heavier gaged sections would become prevalent. This fact has been sub­

stantiated by actual computation wherein shoring costs were increased 

substantially in order to make its presence prohibitive. 

The AA designs are located in the region shown due primarily to 

the acceptability of composite design for the 1.5 inch cold formed 

decking in the range of B from 30 feet to 80 feet. In the region of 

equal to 20 feet, the acceptable framing schemes forecast maximum spans 

acceptable to both 1.5 inch and 3.0 inch cold formed decking. Since the 

1.5 inch cold formed decking requires less concrete and thus a 1 ighter 

beam, it thus produces the optimal cost. 

The C, CX and D designs are optimal in the regions shown as a 

result of the framing scheme geometry as well as the relative cost 
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differences in hard rock and 1 ight-wefght concrete. 

For all the designs of Figure 3 shoring was predominant, Assuming 

sheri ng to be a nul sance Item 1 ts cost was increased until in the optima 1 

design no shoring was necessary. In general it was found that cost 

increases in the order of 6 to 9 times the original shoring cost was 

required to d·o this. The three designs chosen for this investigation 

are numbered in Figure 3, and the initial and final costs are given in 

Table 2. The final cost shown represents the first optimal design to 

appear which did not have shoring, and the factor is the proportional 

increase of the initial shoring cost. 

A further investigation was carried out on the three numbered 

designs. This time the relative costs of light-weight and hardrock 

concrete were varied. These results are given in Table 3 where L/H is 

the ratio of 1 ight-weight concrete cost to hardrock concrete cost. In 

all of these cases the cost of the hardrock concrete remained constant 

and only the 1 ight-weight concrete's cost was varied. 

Des 1 gn 
Number 

1 

2 

3 

Table 2 

Comparison of Optimal Design Costs 
for Increases in Sheri ng Costs 

Initial Design Final Design 

Number I Cost Factor Cost 

$1,107.84 $1 ,268. 75 

$ 455.87 $1 ,560.60 

$2.588.62 $3,056.46 

Table 3 

Comparison of Initial and Final Optimal Design 
Costs for Varying Ratios of Lightweight 

to Hardrock Concrete Costs 

Initial Designs Fi na 1 Designs 

L/H • 2.0 L/H • 1.0 L/H • 3. 0 L/H • 5.0 

Type-T Cost Type Cost Type Cost Type Cost 

c :$1,107.84 c $1 ,049.88 D $1.117.07 D $l,ll7.07 
! 

D ' $ 455.87 ; c $ 446.37 D $ 454.37 $ 454.37 D 
i 

AA ' $2,588.62 . AA $2,635.47 AA ! $2,635.47 AA $2,635.47 

Conclusions 

The computer program used to calculate the resulting design 

selections in this paper can be used by the practicing engineer without 

difficulty. It Is efficient and the average run for a design costs 

approxlma tely $0. 50. The output specffi es directly all the necessary 

details for the optimal design selection for each framing scheme. The 

engineer thus has the option of selecting any acceptable framing scheme 

from this output, which is not necessarily the global optimum. 

From the information given in the results section, 1t would 

appear as though the 1 fghtest gage cold formed decking, if acceptable, 

should be included in the optimal design assuming shoring costs are not 

prohibitive. 

Fireproofing does not appear predominantly in the designs 

carried out. This would suggest that 1f a trade-off can be made between 

fireproofing and concrete thickness the latter would be preferable from 

a cost standpoint. 

The optimal cost design for typical bay sizes incorporates both 

hardrock and light-weight concrete dependent upon the B/A ratio of the 

slab. By varying the relative costs of the hardrock to light-weight 

concrete as shown in Table 3, these designs can be interchanged. 

Finally this program although limited to the flooring systems 

of steel framed buildings, cannot be discounted as being too specific. 

The total cost optimization of such a structure can possibly be best 

approached by considering the complexity of the total problem as a series 

of sub-optimal problems. A program such as that discussed here Is a step 

in this direction. 
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