105 research outputs found

    Patient and Public Involvement Refines the Design of ProtOeus: A Proposed Phase II Trial of Proton Beam Therapy in Oesophageal Cancer

    Get PDF
    Background: Neoadjuvant chemoradiotherapy for oesophageal cancer significantly improves overall survival but is associated with severe post-operative complications. Proton beam therapy may reduce these toxicities by sparing normal tissues compared with standard radiotherapy. ProtOeus is a proposed randomised phase II study of neoadjuvant chemoradiotherapy in oesophageal cancer that compares proton beam therapy to standard radiotherapy techniques. As proton beam therapy services are often centralised in academic centres in major cities, proton beam therapy trials raise distinct challenges including patient acceptance of travelling for proton beam therapy, coordination of treatments with local centres and ensuring equity of access for patients. Methods: Focus groups were held early in the trial development process to establish patients’ views on the trial proposal. Topics discussed include perception of proton beam therapy, patient acceptability of the trial pathway and design, patient-facing materials, and common clinical scenarios. Focus groups were led by the investigators and facilitated by patient involvement teams from the institutions who are involved in this research. Responses for each topic were analysed, and fed back to the trial’s development group. Results: Three focus groups were held in separate locations in the UK (Manchester, Cardiff, Wigan). Proton beam therapy was perceived as superior to standard radiotherapy making the trial attractive. Patients felt strongly that travel costs should be reimbursed to ensure equity of access to proton beam therapy. They were very supportive of a shorter treatment schedule and felt that toxicity reduction was the most important endpoint. Discussion and Conclusions: Incorporating patient views early in the trial development process resulted in significant trial design refinements including travel/accommodation provisions, choice of primary endpoint, randomisation ratio and fractionation schedule. Focus groups are a reproducible and efficient method of incorporating the patient and public voice into research

    Direct correction of haemoglobin E β-thalassaemia using base editors

    Get PDF
    Haemoglobin E (HbE) β-thalassaemia causes approximately 50% of all severe thalassaemia worldwide; equating to around 30,000 births per year. HbE β-thalassaemia is due to a point mutation in codon 26 of the human HBB gene on one allele (GAG; glutamatic acid → AAG; lysine, E26K), and any mutation causing severe β-thalassaemia on the other. When inherited together in compound heterozygosity these mutations can cause a severe thalassaemic phenotype. However, if only one allele is mutated individuals are carriers for the respective mutation and have an asymptomatic phenotype (β-thalassaemia trait). Here we describe a base editing strategy which corrects the HbE mutation either to wildtype (WT) or a normal variant haemoglobin (E26G) known as Hb Aubenas and thereby recreates the asymptomatic trait phenotype. We have achieved editing efficiencies in excess of 90% in primary human CD34 + cells. We demonstrate editing of long-term repopulating haematopoietic stem cells (LT-HSCs) using serial xenotransplantation in NSG mice. We have profiled the off-target effects using a combination of circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq) and deep targeted capture and have developed machine-learning based methods to predict functional effects of candidate off-target mutations

    The Effect of Auditory Distraction on the Useful Field of View in Hearing Impaired Individuals and its implications for driving

    Get PDF
    This study assessed whether the increased demand of listening in hearing impaired individuals exacerbates the detrimental impact of auditory distraction on a visual task (useful field of view test), relative to normally hearing listeners. Auditory distraction negatively affects this visual task, which is linked with various driving performance outcomes. Hearing impaired and normally hearing participants performed useful field of view testing with and without a simultaneous listening task. They also undertook a cognitive test battery. For all participants, performing the visual and auditory tasks together reduced performance on each respective test. For a number of subtests, hearing impaired participants showed poorer visual task performance, though not to a statistically significant extent. Hearing impaired participants were significantly poorer at a reading span task than normally hearing participants and tended to score lower on the most visually complex subtest of the visual task in the absence of auditory task engagement. Useful field of view performance is negatively affected by auditory distraction, and hearing loss may present further problems, given the reductions in visual and cognitive task performance suggested in this study. Suggestions are made for future work to extend this study, given the practical importance of the findings

    A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart

    Get PDF
    Elevated levels of cardiac mitochondrial uncoupling protein 3 (UCP3) and decreased cardiac efficiency (hydraulic power/oxygen consumption) with abnormal cardiac function occur in obese, diabetic mice. To determine whether cardiac mitochondrial uncoupling occurs in non-genetic obesity, we fed rats a high fat diet (55% kcal from fat) or standard laboratory chow (7% kcal from fat) for 3 weeks, after which we measured cardiac function in vivo using cine MRI, efficiency in isolated working hearts and respiration rates and ADP/O ratios in isolated interfibrillar mitochondria; also, measured were medium chain acyl-CoA dehydrogenase (MCAD) and citrate synthase activities plus uncoupling protein 3 (UCP3), mitochondrial thioesterase 1 (MTE-1), adenine nucleotide translocase (ANT) and ATP synthase protein levels. We found that in vivo cardiac function was the same for all rats, yet oxygen consumption was 19% higher in high fat-fed rat hearts, therefore, efficiency was 21% lower than in controls. We found that mitochondrial fatty acid oxidation rates were 25% higher, and MCAD activity was 23% higher, in hearts from rats fed the high fat diet when compared with controls. Mitochondria from high fat-fed rat hearts had lower ADP/O ratios than controls, indicating increased respiratory uncoupling, which was ameliorated by GDP, a UCP3 inhibitor. Mitochondrial UCP3 and MTE-1 levels were both increased by 20% in high fat-fed rat hearts when compared with controls, with no significant change in ATP synthase or ANT levels, or citrate synthase activity. We conclude that increased cardiac oxygen utilisation, and thereby decreased cardiac efficiency, occurs in non-genetic obesity, which is associated with increased mitochondrial uncoupling due to elevated UCP3 and MTE-1 levels

    Effectiveness and cost-effectiveness of a group-based pain self-management intervention for patients undergoing total hip replacement: Feasibility study for a randomized controlled trial

    Get PDF
    Background: Total hip replacement (THR) is a common elective surgical procedure and can be effective for reducing chronic pain. However, waiting times can be considerable. A pain self-management intervention may provide patients with skills to more effectively manage their pain and its impact during their wait for surgery. This study aimed to evaluate the feasibility of conducting a randomized controlled trial to assess the effectiveness and cost-effectiveness of a group-based pain self-management course for patients undergoing THR.Methods: Patients listed for a THR at one orthopedic center were posted a study invitation pack. Participants were randomized to attend a pain self-management course plus standard care or standard care only. The lay-led course was delivered by Arthritis Care and consisted of two half-day sessions prior to surgery and one full-day session after surgery. Participants provided outcome and resource-use data using a diary and postal questionnaires prior to surgery and one month, three months and six months after surgery. Brief telephone interviews were conducted with non-participants to explore barriers to participation.Results: Invitations were sent to 385 eligible patients and 88 patients (23%) consented to participate. Interviews with 57 non-participants revealed the most common reasons for non-participation were views about the course and transport difficulties. Of the 43 patients randomized to the intervention group, 28 attended the pre-operative pain self-management sessions and 11 attended the post-operative sessions. Participant satisfaction with the course was high, and feedback highlighted that patients enjoyed the group format. Retention of participants was acceptable (83% of recruited patients completed follow-up) and questionnaire return rates were high (72% to 93%), with the exception of the pre-operative resource-use diary (35% return rate). Resource-use completion rates allowed for an economic evaluation from the health and social care payer perspective.Conclusions: This study highlights the importance of feasibility work prior to a randomized controlled trial to assess recruitment methods and rates, barriers to participation, logistics of scheduling group-based interventions, acceptability of the intervention and piloting resource use questionnaires to improve data available for economic evaluations. This information is of value to researchers and funders in the design and commissioning of future research.Trial registration: Current Controlled Trials ISRCTN52305381. © 2014 Wylde et al.; licensee BioMed Central Ltd

    Common Genetic Variants near the Brittle Cornea Syndrome Locus ZNF469 Influence the Blinding Disease Risk Factor Central Corneal Thickness

    Get PDF
    Central corneal thickness (CCT), one of the most highly heritable human traits (h2 typically>0.9), is important for the diagnosis of glaucoma and a potential risk factor for glaucoma susceptibility. We conducted genome-wide association studies in five cohorts from Australia and the United Kingdom (total N = 5058). Three cohorts were based on individually genotyped twin collections, with the remaining two cohorts genotyped on pooled samples from singletons with extreme trait values. The pooled sample findings were validated by individual genotyping the pooled samples together with additional samples also within extreme quantiles. We describe methods for efficient combined analysis of the results from these different study designs. We have identified and replicated quantitative trait loci on chromosomes 13 and 16 for association with CCT. The locus on chromosome 13 (nearest gene FOXO1) had an overall meta-analysis p-value for all the individually genotyped samples of 4.6×10−10. The locus on chromosome 16 was associated with CCT with p = 8.95×10−11. The nearest gene to the associated chromosome 16 SNPs was ZNF469, a locus recently implicated in Brittle Cornea Syndrome (BCS), a very rare disorder characterized by abnormal thin corneas. Our findings suggest that in addition to rare variants in ZNF469 underlying CCT variation in BCS patients, more common variants near this gene may contribute to CCT variation in the general population

    High-Throughput Sequencing to Reveal Genes Involved in Reproduction and Development in Bactrocera dorsalis (Diptera: Tephritidae)

    Get PDF
    BACKGROUND: Tephritid fruit flies in the genus Bactrocera are of major economic significance in agriculture causing considerable loss to the fruit and vegetable industry. Currently, there is no ideal control program. Molecular means is an effective method for pest control at present, but genomic or transcriptomic data for members of this genus remains limited. To facilitate molecular research into reproduction and development mechanisms, and finally effective control on these pests, an extensive transcriptome for the oriental fruit fly Bactrocera dorsalis was produced using the Roche 454-FLX platform. RESULTS: We obtained over 350 million bases of cDNA derived from the whole body of B. dorsalis at different developmental stages. In a single run, 747,206 sequencing reads with a mean read length of 382 bp were obtained. These reads were assembled into 28,782 contigs and 169,966 singletons. The mean contig size was 750 bp and many nearly full-length transcripts were assembled. Additionally, we identified a great number of genes that are involved in reproduction and development as well as genes that represent nearly all major conserved metazoan signal transduction pathways, such as insulin signal transduction. Furthermore, transcriptome changes during development were analyzed. A total of 2,977 differentially expressed genes (DEGs) were detected between larvae and pupae libraries, while there were 1,621 DEGs between adults and larvae, and 2,002 between adults and pupae. These DEGs were functionally annotated with KEGG pathway annotation and 9 genes were validated by qRT-PCR. CONCLUSION: Our data represent the extensive sequence resources available for B. dorsalis and provide for the first time access to the genetic architecture of reproduction and development as well as major signal transduction pathways in the Tephritid fruit fly pests, allowing us to elucidate the molecular mechanisms underlying courtship, ovipositing, development and detailed analyses of the signal transduction pathways

    Arabidopsis COMPASS-Like Complexes Mediate Histone H3 Lysine-4 Trimethylation to Control Floral Transition and Plant Development

    Get PDF
    Histone H3 lysine-4 (H3K4) methylation is associated with transcribed genes in eukaryotes. In Drosophila and mammals, both di- and tri-methylation of H3K4 are associated with gene activation. In contrast to animals, in Arabidopsis H3K4 trimethylation, but not mono- or di-methylation of H3K4, has been implicated in transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS or COMPASS-like in yeast and mammals. Here, we report that Arabidopsis homologs of the COMPASS and COMPASS-like complex core components known as Ash2, RbBP5, and WDR5 in humans form a nuclear subcomplex during vegetative and reproductive development, which can associate with multiple putative H3K4 methyltransferases. Loss of function of ARABIDOPSIS Ash2 RELATIVE (ASH2R) causes a great decrease in genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Knockdown of ASH2R or the RbBP5 homolog suppresses the expression of a crucial Arabidopsis floral repressor, FLOWERING LOCUS C (FLC), and FLC homologs resulting in accelerated floral transition. ASH2R binds to the chromatin of FLC and FLC homologs in vivo and is required for H3K4 trimethylation, but not for H3K4 dimethylation in these loci; overexpression of ASH2R causes elevated H3K4 trimethylation, but not H3K4 dimethylation, in its target genes FLC and FLC homologs, resulting in activation of these gene expression and consequent late flowering. These results strongly suggest that H3K4 trimethylation in FLC and its homologs can activate their expression, providing concrete evidence that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings suggest that there are multiple COMPASS-like complexes in Arabidopsis and that these complexes deposit trimethyl but not di- or mono-methyl H3K4 in target genes to promote their expression, providing a molecular explanation for the observed coupling of H3K4 trimethylation (but not H3K4 dimethylation) with active gene expression in Arabidopsis

    Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considerations in applying association mapping (AM) to plant breeding are population structure and size: not accounting for structure and/or using small populations can lead to elevated false-positive rates. The principal determinants of population structure in cultivated barley are growth habit and inflorescence type. Both are under complex genetic control: growth habit is controlled by the epistatic interactions of several genes. For inflorescence type, multiple loss-of-function alleles in one gene lead to the same phenotype. We used these two traits as models for assessing the effectiveness of AM. This research was initiated using the CAP Core germplasm array (n = 102) assembled at the start of the Barley Coordinated Agricultural Project (CAP). This array was genotyped with 4,608 SNPs and we re-sequenced genes involved in morphology, growth and development. Larger arrays of breeding germplasm were subsequently genotyped and phenotyped under the auspices of the CAP project. This provided sets of 247 accessions phenotyped for growth habit and 2,473 accessions phenotyped for inflorescence type. Each of the larger populations was genotyped with 3,072 SNPs derived from the original set of 4,608.</p> <p>Results</p> <p>Significant associations with SNPs located in the vicinity of the loci involved in growth habit and inflorescence type were found in the CAP Core. Differentiation of true and spurious associations was not possible without <it>a priori </it>knowledge of the candidate genes, based on re-sequencing. The re-sequencing data were used to define allele types of the determinant genes based on functional polymorphisms. In a second round of association mapping, these synthetic markers based on allele types gave the most significant associations. When the synthetic markers were used as anchor points for analysis of interactions, we detected other known-function genes and candidate loci involved in the control of growth habit and inflorescence type. We then conducted association analyses - with SNP data only - in the larger germplasm arrays. For both vernalization sensitivity and inflorescence type, the most significant associations in the larger data sets were found with SNPs coincident with the synthetic markers used in the CAP Core and with SNPs detected via interaction analysis in the CAP Core.</p> <p>Conclusions</p> <p>Small and highly structured collections of germplasm, such as the CAP Core, are cost-effectively phenotyped and genotyped with high-throughput markers. They are also useful for characterizing allelic diversity at loci in germplasm of interest. Our results suggest that discovery-oriented exercises in AM in such small arrays may generate a large number of false-positives. However, if haplotypes in candidate genes are available, they may be used as anchors in an analysis of interactions to identify other candidate regions harboring genes determining target traits. Using larger germplasm arrays, genome regions where the principal genes determining vernalization sensitivity and row type are located were identified.</p
    corecore