114 research outputs found

    Surface Morphology Evolution of GaAs by Low Energy Ion Sputtering

    Get PDF
    Low energy Ar+ion sputtering, typically below 1,200 eV, of GaAs at normal beam incident angle is investigated. Surface morphology development with respect to varying energy is analyzed and discussed. Dot-like patterns in the nanometer scale are obtained above 600 eV. As the energy approaches upper eV range regular dots have evolved. The energy dependent dot evolution is evaluated based on solutions of the isotropic Kuramoto-Sivashinsky equation. The results are in agreement with the theoretical model which describes a power law dependency of the characteristic wavelength on ion energy in the ion-induced diffusion regime

    Alloantibodies, Anti-D, Childbearing age, Women, Cameroon

    Get PDF
    We conducted a cross sectional retrospective study to determine anti-D and D-negative phenotype rates among Cameroonian women of reproductive age (15 – 44 years), in order to evaluate the importance ofD alloimmunization. Analysis of the haematology laboratory records from January 2006 to December 2007 harvested 225 results for red blood cell alloantibody screening and 2460 D phenotypes. Anti-D rate was found to be high at 4% and not linked to women’s parity. Three hundred and fifty two (14.3%) women were found to be D-negative. Anti-D rates significantly decreased with age from 18.8% among teenagers (15-19) to 7.8% among older women (35-44) (p = 0.001). The number of women submitted to both irregular antibody screening and type D phenotype determination was not strong enough (50) to analyse the link between anti-D rate and antigen D distribution in our study (Afr J Reprod Health 2009; 13[3]:47-52)

    Investigation of Semiconductor Quantum Dots for Waveguide Electroabsorption Modulator

    Get PDF
    In this work, we investigated the use of 10-layer InAs quantum dot (QD) as active region of an electroabsorption modulator (EAM). The QD-EAM is a p-i-n ridge waveguide structure with intrinsic layer thickness of 0.4 ΞΌm, width of 10 ΞΌm, and length of 1.0 mm. Photocurrent measurement reveals a Stark shift of ~5 meV (~7 nm) at reverse bias of 3 V (75 kV/cm) and broadening of the resonance peak due to field ionization of electrons and holes was observed for E-field larger than 25 kV/cm. Investigation at wavelength range of 1,300–1320 nm reveals that the largest absorption change occurs at 1317 nm. Optical transmission measurement at this wavelength shows insertion loss of ~8 dB, and extinction ratio of ~5 dB at reverse bias of 5 V. Consequently, methods to improve the performance of the QD-EAM are proposed. We believe that QDs are promising for EAM and the performance of QD-EAM will improve with increasing research efforts

    Genome of the Avirulent Human-Infective Trypanosomeβ€”Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.Β  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.Β  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Induction of APOBEC3 Exacerbates DNA Replication Stress and Chromosomal Instability in Early Breast and Lung Cancer Evolution

    Get PDF
    APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast DCIS, and in pre-invasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx pre-invasive to invasive NSCLC lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models, revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in pre-invasive disease, providing fuel for selection early in cancer evolution

    A MAP6-Related Protein Is Present in Protozoa and Is Involved in Flagellum Motility

    Get PDF
    In vertebrates the microtubule-associated proteins MAP6 and MAP6d1 stabilize cold-resistant microtubules. Cilia and flagella have cold-stable microtubules but MAP6 proteins have not been identified in these organelles. Here, we describe TbSAXO as the first MAP6-related protein to be identified in a protozoan, Trypanosoma brucei. Using a heterologous expression system, we show that TbSAXO is a microtubule stabilizing protein. Furthermore we identify the domains of the protein responsible for microtubule binding and stabilizing and show that they share homologies with the microtubule-stabilizing Mn domains of the MAP6 proteins. We demonstrate, in the flagellated parasite, that TbSAXO is an axonemal protein that plays a role in flagellum motility. Lastly we provide evidence that TbSAXO belongs to a group of MAP6-related proteins (SAXO proteins) present only in ciliated or flagellated organisms ranging from protozoa to mammals. We discuss the potential roles of the SAXO proteins in cilia and flagella function

    Analysis of Clonal Type-Specific Antibody Reactions in Toxoplasma gondii Seropositive Humans from Germany by Peptide-Microarray

    Get PDF
    BACKGROUND: Different clonal types of Toxoplasma gondii are thought to be associated with distinct clinical manifestations of infections. Serotyping is a novel technique which may allow to determine the clonal type of T. gondii humans are infected with and to extend typing studies to larger populations which include infected but non-diseased individuals. METHODOLOGY: A peptide-microarray test for T. gondii serotyping was established with 54 previously published synthetic peptides, which mimic clonal type-specific epitopes. The test was applied to human sera (nβ€Š=β€Š174) collected from individuals with an acute T. gondii infection (nβ€Š=β€Š21), a latent T. gondii infection (nβ€Š=β€Š53) and from T. gondii-seropositive forest workers (nβ€Š=β€Š100). FINDINGS: The majority (nβ€Š=β€Š124; 71%) of all T. gondii seropositive human sera showed reactions against synthetic peptides with sequences specific for clonal type II (type II peptides). Type I and type III peptides were recognized by 42% (nβ€Š=β€Š73) or 16% (nβ€Š=β€Š28) of the human sera, respectively, while type II-III, type I-III or type I-II peptides were recognized by 49% (nβ€Š=β€Š85), 36% (nβ€Š=β€Š62) or 14% (nβ€Š=β€Š25) of the sera, respectively. Highest reaction intensities were observed with synthetic peptides mimicking type II-specific epitopes. A proportion of the sera (nβ€Š=β€Š22; 13%) showed no reaction with type-specific peptides. Individuals with acute toxoplasmosis reacted with a statistically significantly higher number of peptides as compared to individuals with latent T. gondii infection or seropositive forest workers. CONCLUSIONS: Type II-specific reactions were overrepresented and higher in intensity in the study population, which was in accord with genotyping studies on T. gondii oocysts previously conducted in the same area. There were also individuals with type I- or type III-specific reactions. Well-characterized reference sera and further specific peptide markers are needed to establish and to perform future serotyping approaches with higher resolution

    Chromosomal instability drives metastasis through a cytosolic DNA response

    Get PDF
    Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS–STING (cyclic GMP-AMP synthase–stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-ΞΊB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs
    • …
    corecore