2,276 research outputs found
Spectroscopic analysis of finite size effects around a Kondo quantum dot
We consider a simple setup in which a small quantum dot is strongly connected
to a finite size box. This box can be either a metallic box or a finite size
quantum wire.The formation of the Kondo screening cloud in the box strongly
depends on the ratio between the Kondo temperature and the box level spacing.
By weakly connecting two metallic reservoirs to the quantum dot, a detailed
spectroscopic analysis can be performed. Since the transport channels and the
screening channels are almost decoupled, such a setup allows an easier access
to the measure of finite-size effects associated with the finite extension of
the Kondo cloud.Comment: contribution to Les Houches proceeding, ``Quantum magnetism'' 200
Kondo screening cloud effects in mesoscopic devices
We study how finite size effects may appear when a quantum dot in the Kondo
Coulomb blockade regime is embedded into a mesoscopic device with finite wires.
These finite size effects appear when the size of the mesoscopic device
containing the quantum dot is of the order of the size of Kondo cloud and
affect all thermodynamic and transport properties of the Kondo quantum dot. We
also generalize our results to the experimentally relevant case where the wires
contain several transverse modes/channels. Our results are based on
perturbation theory, Fermi liquid theory and slave boson mean field theory.Comment: 19 pages, 9 figure
Temperature and Field Dependence of the Energy Gap of MgB2/Pb planar junction
We have constructed MgB2/Pb planar junctions for both temperature and field
dependence studies. Our results show that the small gap is a true bulk property
of MgB2 superconductor, not due to surface effects. The temperature dependence
of the energy gap manifests a nearly BCS-like behavior. Analysis of the effect
of magnetic field on junctions suggests that the energy gap of MgB2 depends
non-linearly on the magnetic field. Moreover, MgB2 has an upper critical field
of 15 T, in agreement with some reported Hc2 from transport measurements.Comment: 5 pages, 5 figures. Submitted to Phys. Rev.
Detecting the Kondo screening cloud around a quantum dot
A fundamental prediction of scaling theories of the Kondo effect is the
screening of an impurity spin by a cloud of electrons spread out over a
mesoscopic distance. This cloud has never been observed experimentally.
Recently, aspects of the Kondo effect have been observed in experiments on
quantum dots embedded in quantum wires. Since the length of the wire may be of
order the size of the screening cloud, such systems provide an ideal
opportunity to observe it. We point out that persistent current measurements in
a closed ring provide a conceptually simple way of detecting this fundamental
length scale.Comment: 4 pages, RevTex, 1 postscript figur
A network analysis to identify pathophysiological pathways distinguishing ischaemic from non-ischaemic heart failure
Aims
Heart failure (HF) is frequently caused by an ischaemic event (e.g. myocardial infarction) but might also be caused by a primary disease of the myocardium (cardiomyopathy). In order to identify targeted therapies specific for either ischaemic or non‐ischaemic HF, it is important to better understand differences in underlying molecular mechanisms.
Methods and results
We performed a biological physical protein–protein interaction network analysis to identify pathophysiological pathways distinguishing ischaemic from non‐ischaemic HF. First, differentially expressed plasma protein biomarkers were identified in 1160 patients enrolled in the BIOSTAT‐CHF study, 715 of whom had ischaemic HF and 445 had non‐ischaemic HF. Second, we constructed an enriched physical protein–protein interaction network, followed by a pathway over‐representation analysis. Finally, we identified key network proteins. Data were validated in an independent HF cohort comprised of 765 ischaemic and 100 non‐ischaemic HF patients. We found 21/92 proteins to be up‐regulated and 2/92 down‐regulated in ischaemic relative to non‐ischaemic HF patients. An enriched network of 18 proteins that were specific for ischaemic heart disease yielded six pathways, which are related to inflammation, endothelial dysfunction superoxide production, coagulation, and atherosclerosis. We identified five key network proteins: acid phosphatase 5, epidermal growth factor receptor, insulin‐like growth factor binding protein‐1, plasminogen activator urokinase receptor, and secreted phosphoprotein 1. Similar results were observed in the independent validation cohort.
Conclusions
Pathophysiological pathways distinguishing patients with ischaemic HF from those with non‐ischaemic HF were related to inflammation, endothelial dysfunction superoxide production, coagulation, and atherosclerosis. The five key pathway proteins identified are potential treatment targets specifically for patients with ischaemic HF
Adiabatic transport in nanostructures
A confined system of non-interacting electrons, subject to the combined
effect of a time-dependent potential and different external
chemical-potentials, is considered. The current flowing through such a system
is obtained for arbitrary strengths of the modulating potential, using the
adiabatic approximation in an iterative manner. A new formula is derived for
the charge pumped through an un-biased system (all external chemical potentials
are kept at the same value); It reproduces the Brouwer formula for a
two-terminal nanostructure. The formalism presented yields the effect of the
chemical potential bias on the pumped charge on one hand, and the modification
of the Landauer formula (which gives the current in response to a constant
chemical-potential difference) brought about by the modulating potential on the
other. Corrections to the adiabatic approximation are derived and discussed.Comment: 8 pages, 2 figure
The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
Observations indicate that nearly all galaxies contain supermassive black
holes (SMBHs) at their centers. When galaxies merge, their component black
holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves
(GWs) that can be detected by pulsar timing arrays (PTAs). We have searched the
recently-released North American Nanohertz Observatory for Gravitational Waves
(NANOGrav) 11-year data set for GWs from individual SMBHBs in circular orbits.
As we did not find strong evidence for GWs in our data, we placed 95\% upper
limits on the strength of GWs from such sources as a function of GW frequency
and sky location. We placed a sky-averaged upper limit on the GW strain of at nHz. We also developed a
technique to determine the significance of a particular signal in each pulsar
using ``dropout' parameters as a way of identifying spurious signals in
measurements from individual pulsars. We used our upper limits on the GW strain
to place lower limits on the distances to individual SMBHBs. At the
most-sensitive sky location, we ruled out SMBHBs emitting GWs with
nHz within 120 Mpc for , and
within 5.5 Gpc for . We also determined that
there are no SMBHBs with emitting
GWs in the Virgo Cluster. Finally, we estimated the number of potentially
detectable sources given our current strain upper limits based on galaxies in
Two Micron All-Sky Survey (2MASS) and merger rates from the Illustris
cosmological simulation project. Only 34 out of 75,000 realizations of the
local Universe contained a detectable source, from which we concluded it was
unsurprising that we did not detect any individual sources given our current
sensitivity to GWs.Comment: 10 pages, 11 figures. Accepted by Astrophysical Journal. Please send
any comments/questions to S. J. Vigeland ([email protected]
Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment
Peer reviewedPublisher PD
- …