20 research outputs found

    LOWER BODY KINEMATICS AND MUSCLE ACTIVITY DURING EXERCICES IN 3D MOTORIZED ROTATING PLATFORM. IN-VIVO STUDY AND MODEL

    Get PDF
    The purpose of this study was to characterize muscle solicitations implied by the movement of a motorized rotating platform (MRP). Subjects performed five classical exercises on a MRP as part of lower limbs rehabilitation programs. EMG signals were recorded to quantify level and duration of activation of seven lower limbs muscles. Subject-specific musculoskeletal models were built and animated from kinematic recordings to estimate muscle lengths evolution. Results show that unipodal stance exercise was more demanding compared to bipodal ones. The characterization of solicitations imposed by MRP exercises could be useful for physiotherapists in order to help them to better select and configure exercises regarding to subject specificities, pathology and rehabilitation evolution

    Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials.

    Get PDF
    Funder: laura and john arnold foundationBACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care

    Mesure inertielle pour l'analyse du mouvement humain. Optimisation des méthodologies de traitement et de fusion des données capteur, intégration anatomique

    No full text
    To face the limits of optoelectronic systems (heavy device, restricted measurement field), inertial sensors are a promising alternative for human motion analysis. Thanks to the latest technical advancements like sensor miniaturization, they can now work autonomously which makes possible to directly embed them on the human segments. But, as a counterpart of these developments, inertial sensor measurement still suffers from both stochastic and deterministic perturbations. The induced errors then propagate over the so-called fusion algorithm used to estimate human segment orientation. A common tool to perform such an operation is the Kalman filter that estimates unknown variables by correcting noisy measurements by the use of a dynamic model.With the aim of achieving a sufficiently accurate measurement to perform human motion analysis, various methodologies are proposed in the present work. The first part of this thesis focuses on the sensors. First, inertial sensor noises are studied and modeled in order to be integrated into the Kalman filter. Calibration processes as their effects over the measurement are for that purposed analyzed. Some recommendations are thus proposed to reach a compromise between calibration performance and complexity.In a second part, the data fusion algorithm is approached. A specific Kalman filter dedicated to human motion measurement is first proposed. Then, a recurrent problem is studied in details: the definition of the covariance matrix that represents a globalcharacterization of the measurement errors. Considering an optoelectronic system as a reference to compare inertial measurement, a method is proposed for this covariance matrix identification, which also highlights the need to address this problem rigorously.In a third part, we begin to address the use of inertial sensors for human motion analysis by focusing on models and IMU-to-segment calibration.To conclude, the benefits made by the proposed methodologies are evaluated and discussed.Face aux limites auxquelles doivent faire face les systèmes optoélectroniques (matériel lourd, champ de mesure limité), les capteurs inertiels constituent une alternative prometteuse pour la mesure du mouvement humain. Grâce aux dernières avancées techniques, notamment en termes de miniaturisation des capteurs, leur utilisation en ambulatoire c’est-à-dire de façon autonome et embarquée est devenue possible. Mais ces opérations de miniaturisation ne sont pas sans effet sur les performances de ces capteurs. En effet, une telle mesure est dégradée par différents types de perturbations (stochastiques et déterministes) qui sont alors propagées au cours du processus dit de fusion des données visant à estimer l'orientation des segments humains. Classiquement, cette opération est réalisée à l'aide d'un filtre de Kalman dont le rôle est justement d'estimer une grandeur à partir d'une mesure bruitée en la confrontant à un modèle d'évolution.Dans ce contexte, nous proposons diverses méthodologies dans le but d'accéder à une mesure suffisamment précise pour être exploitée dans le cadre de l'analyse du mouvement humain. La première partie de cette thèse se focalise sur les capteurs. Tout d'abord, nous étudions les bruits de mesure issus des capteurs inertiels, puis nous leur attribuons un modèle afin de les prendre en compte au sein du filtre de Kalman. Ensuite, nous analysons les procédures de calibrage et évaluons leurs effets réels sur la mesure afin d'émettre quelques propositions en termes de compromis performance/facilité de réalisation.Dans une seconde partie, nous nous consacrons à l'algorithme de fusion des données. Après avoir proposé un filtre de Kalman adapté à la mesure du mouvement humain, nous nous focalisons sur un problème récurrent à ce stade : l'identification des matrices de covariance dont le rôle est d'attribuer une caractérisation globale aux erreurs de mesure. Cette méthode, basée sur une confrontation de la mesure avec une référence issue d'un système optoélectronique, met en évidence la nécessité de traiter ce problème rigoureusement.Dans une troisième partie, nous commençons à aborder les problèmes liés à l'utilisation des capteurs inertiels pour la mesure du mouvement humain, notamment le calibrage anatomique et le positionnement des capteurs.En conclusion, les gains apportés par les diverses propositions avancées dans cette thèse sont évalués et discutés

    Inertial measurement for human motion analysis. Optimization of methodologies for processing and fusion of sensor data, anatomical integration

    No full text
    Face aux limites auxquelles doivent faire face les systèmes optoélectroniques (matériel lourd, champ de mesure limité), les capteurs inertiels constituent une alternative prometteuse pour la mesure du mouvement humain. Grâce aux dernières avancées techniques, notamment en termes de miniaturisation des capteurs, leur utilisation en ambulatoire c’est-à-dire de façon autonome et embarquée est devenue possible. Mais ces opérations de miniaturisation ne sont pas sans effet sur les performances de ces capteurs. En effet, une telle mesure est dégradée par différents types de perturbations (stochastiques et déterministes) qui sont alors propagées au cours du processus dit de fusion des données visant à estimer l'orientation des segments humains. Classiquement, cette opération est réalisée à l'aide d'un filtre de Kalman dont le rôle est justement d'estimer une grandeur à partir d'une mesure bruitée en la confrontant à un modèle d'évolution.Dans ce contexte, nous proposons diverses méthodologies dans le but d'accéder à une mesure suffisamment précise pour être exploitée dans le cadre de l'analyse du mouvement humain. La première partie de cette thèse se focalise sur les capteurs. Tout d'abord, nous étudions les bruits de mesure issus des capteurs inertiels, puis nous leur attribuons un modèle afin de les prendre en compte au sein du filtre de Kalman. Ensuite, nous analysons les procédures de calibrage et évaluons leurs effets réels sur la mesure afin d'émettre quelques propositions en termes de compromis performance/facilité de réalisation.Dans une seconde partie, nous nous consacrons à l'algorithme de fusion des données. Après avoir proposé un filtre de Kalman adapté à la mesure du mouvement humain, nous nous focalisons sur un problème récurrent à ce stade : l'identification des matrices de covariance dont le rôle est d'attribuer une caractérisation globale aux erreurs de mesure. Cette méthode, basée sur une confrontation de la mesure avec une référence issue d'un système optoélectronique, met en évidence la nécessité de traiter ce problème rigoureusement.Dans une troisième partie, nous commençons à aborder les problèmes liés à l'utilisation des capteurs inertiels pour la mesure du mouvement humain, notamment le calibrage anatomique et le positionnement des capteurs.En conclusion, les gains apportés par les diverses propositions avancées dans cette thèse sont évalués et discutés.To face the limits of optoelectronic systems (heavy device, restricted measurement field), inertial sensors are a promising alternative for human motion analysis. Thanks to the latest technical advancements like sensor miniaturization, they can now work autonomously which makes possible to directly embed them on the human segments. But, as a counterpart of these developments, inertial sensor measurement still suffers from both stochastic and deterministic perturbations. The induced errors then propagate over the so-called fusion algorithm used to estimate human segment orientation. A common tool to perform such an operation is the Kalman filter that estimates unknown variables by correcting noisy measurements by the use of a dynamic model.With the aim of achieving a sufficiently accurate measurement to perform human motion analysis, various methodologies are proposed in the present work. The first part of this thesis focuses on the sensors. First, inertial sensor noises are studied and modeled in order to be integrated into the Kalman filter. Calibration processes as their effects over the measurement are for that purposed analyzed. Some recommendations are thus proposed to reach a compromise between calibration performance and complexity.In a second part, the data fusion algorithm is approached. A specific Kalman filter dedicated to human motion measurement is first proposed. Then, a recurrent problem is studied in details: the definition of the covariance matrix that represents a globalcharacterization of the measurement errors. Considering an optoelectronic system as a reference to compare inertial measurement, a method is proposed for this covariance matrix identification, which also highlights the need to address this problem rigorously.In a third part, we begin to address the use of inertial sensors for human motion analysis by focusing on models and IMU-to-segment calibration.To conclude, the benefits made by the proposed methodologies are evaluated and discussed

    Identification of Noise Covariance Matrices to Improve Orientation Estimation by Kalman Filter

    No full text
    Magneto-inertial measurement units (MIMUs) are a promising way to perform human motion analysis outside the laboratory. To do so, in the literature, orientation provided by an MIMU is used to deduce body segment orientation. This is generally achieved by means of a Kalman filter that fuses acceleration, angular velocity, and magnetic field measures. A critical point when implementing a Kalman filter is the initialization of the covariance matrices that characterize mismodelling and input error from noisy sensors. The present study proposes a methodology to identify the initial values of these covariance matrices that optimize orientation estimation in the context of human motion analysis. The approach used was to apply motion to the sensor manually, and to compare the orientation obtained via the Kalman filter to a measurement from an optoelectronic system acting as a reference. Testing different sets of values for each parameter of the covariance matrices, and comparing each MIMU measurement with the reference measurement, enabled identification of the most effective values. Moreover, with these optimized initial covariance matrices, the orientation estimation was greatly improved. The method, as presented here, provides a unique solution to the problem of identifying the optimal covariance matrices values for Kalman filtering. However, the methodology should be improved in order to reduce the duration of the whole process

    Simple and efficient thermal calibration for MEMS gyroscopes

    No full text
    International audienceGyroscopes are now becoming one of the most sold MEMS sensors, given that the many applications that require their use are booming. In the medical field, gyroscopes can be found in Inertial Measurement Units used for the development of clinical tools that are dedicated to human-movement monitoring. However, MEMS gyroscopes are known to suffer from a drift phenomenon, which is mainly due to temperature variations. This drift dramatically affects measurement capability, especially that of cheap MEMs gyroscopes. Calibration is therefore a key factor in achieving accurate measurements. However, traditional calibration procedures are often complex and require costly equipment. This paper therefore proposes an easy protocol for performing a thermal gyroscope calibration. In this protocol, accuracy over the angular velocity is evaluated by referring to an optoelectronic measurement, and is compared with the traditional calibration performed by the manufacturer. The RMSE between the reference angular velocity and that obtained with the proposed calibration was of 0.7°/s, which was slightly smaller than the RMSE of 1.1°/s achieved by the manufacturer's calibration. An analysis of uncertainty propagation shows that offset variability is the major source of error over the computed rate of rotation from the tested sensors, since it accounts for 97% of the error. It can be concluded that the proposed simple calibration method leads to a similar degree of accuracy as that achieved by the manufacturer's procedure
    corecore