2,241 research outputs found

    The Effect of Sodium Selenate Biofortification on Plant Yield, Mineral Content, and Antioxidant Capacity of Culinary Herb Microgreens

    Get PDF
    Selenium (Se) biofortification of plants has been suggested as a method for enhancing dietary Se intake. Popular herbs such as basil (Ocimum basilicum), cilantro (Coriandrum sativum), and scallions (Allium fistulosum) are used for enhancing flavors. Microgreens are young seedlings harvested with one to two true leaves and are increasingly popular in the consumer marketplace. In this study, basil, cilantro, and scallion microgreens were treated with various concentrations of Se as sodium selenate in hydroponic conditions to investigate the effect on plant yield, mineral content (selenium, sulfur, sodium, potassium, phosphorus, calcium, magnesium, copper, iron, manganese, zinc, and boron), total phenolic compounds, and antioxidant capacity. Results showed scallions had the largest increase in Se content by 98, 202, and 507 times (p \u3c 0.05) in 2.5, 5.0, and 10.0 mg‧L-1 Se treatments, respectively. At 10.0 mg‧L-1 Se, scallions demonstrated increases in all minerals analyzed, total phenolic compounds (113.7%), and total antioxidant capacity (152.2%), but yield decreased by 68.0%. At the highest Se treatment for basil and cilantro, 5.0 mg‧L-1, basil increased in potassium, phosphorus, sulfur, total phenolic compounds (102.6%), and antioxidant capacity (68.6%) but decreased plant yield by 35.5%. Cilantro demonstrated increased sodium, total phenolic compounds (50.3%), and antioxidant capacity (66.0%) without an effect on plant yield. Overall, results showed Se biofortification enhances the content of Se, other minerals relevant to human health, and antioxidants in culinary herb microgreens. Nutritionally, scallions at 10.0 mg‧L-1 Se can offer the highest source of Se with added benefits of increases in other minerals and antioxidants

    Biofortification of Sodium Selenate Improves Dietary Mineral Contents and Antioxidant Capacity of Culinary Herb Microgreens

    Get PDF
    Selenium biofortification of plants has been suggested as a method of enhancing dietary seleniumintake to prevent deficiency and chronic disease in humans, while avoiding toxic levels of intake. Popular herbs such as basil (Ocimum basilicum L.), cilantro (Coriandrum sativum L.), and scallions (Allium fistulosum L.) present an opportunity for biofortification as these plants are used for added flavors to meals and are available as microgreens, young plants with increasing popularity in the consumer marketplace. In this study, basil, cilantro, and scallion microgreens were biofortified with sodium selenate under hydroponic conditions at various selenium concentrations to investigate the effects on yield, selenium content, other mineral contents (i.e., sodium, potassium, calcium, magnesium, phosphorus, copper, zinc, iron, manganese, sulfur, and boron), total phenol content, and antioxidant capacity [oxygen radical absorbance capacity (ORAC)]. The results showed that the selenium content increased significantly at all concentrations, with scallions demonstrating the largest increase. The effects on other minerals varied among herb species. Antioxidant capacity and total phenol content increased in all herbs at the highest selenium treatments, but basil and scallions demonstrated a decreased crop yield. Overall, these biofortified culinary herbmicrogreens are an ideal functional food for enhancing selenium, other dietary minerals, and antioxidants to benefit human health

    Single-object Imaging and Spectroscopy to Enhance Dark Energy Science from LSST

    Get PDF
    Single-object imaging and spectroscopy on telescopes with apertures ranging from ~4 m to 40 m have the potential to greatly enhance the cosmological constraints that can be obtained from LSST. Two major cosmological probes will benefit greatly from LSST follow-up: accurate spectrophotometry for nearby and distant Type Ia supernovae will expand the cosmological distance lever arm by unlocking the constraining power of high-z supernovae; and cosmology with time delays of strongly-lensed supernovae and quasars will require additional high-cadence imaging to supplement LSST, adaptive optics imaging or spectroscopy for accurate lens and source positions, and IFU or slit spectroscopy to measure detailed properties of lens systems. We highlight the scientific impact of these two science drivers, and discuss how additional resources will benefit them. For both science cases, LSST will deliver a large sample of objects over both the wide and deep fields in the LSST survey, but additional data to characterize both individual systems and overall systematics will be key to ensuring robust cosmological inference to high redshifts. Community access to large amounts of natural-seeing imaging on ~2-4 m telescopes, adaptive optics imaging and spectroscopy on 8-40 m telescopes, and high-throughput single-target spectroscopy on 4-40 m telescopes will be necessary for LSST time domain cosmology to reach its full potential. In two companion white papers we present the additional gains for LSST cosmology that will come from deep and from wide-field multi-object spectroscopy.Comment: Submitted to the call for Astro2020 science white paper

    Wide-field Multi-object Spectroscopy to Enhance Dark Energy Science from LSST

    Get PDF
    LSST will open new vistas for cosmology in the next decade, but it cannot reach its full potential without data from other telescopes. Cosmological constraints can be greatly enhanced using wide-field (>20>20 deg2^2 total survey area), highly-multiplexed optical and near-infrared multi-object spectroscopy (MOS) on 4-15m telescopes. This could come in the form of suitably-designed large surveys and/or community access to add new targets to existing projects. First, photometric redshifts can be calibrated with high precision using cross-correlations of photometric samples against spectroscopic samples at 0<z<30 < z < 3 that span thousands of sq. deg. Cross-correlations of faint LSST objects and lensing maps with these spectroscopic samples can also improve weak lensing cosmology by constraining intrinsic alignment systematics, and will also provide new tests of modified gravity theories. Large samples of LSST strong lens systems and supernovae can be studied most efficiently by piggybacking on spectroscopic surveys covering as much of the LSST extragalactic footprint as possible (up to 20,000\sim20,000 square degrees). Finally, redshifts can be measured efficiently for a high fraction of the supernovae in the LSST Deep Drilling Fields (DDFs) by targeting their hosts with wide-field spectrographs. Targeting distant galaxies, supernovae, and strong lens systems over wide areas in extended surveys with (e.g.) DESI or MSE in the northern portion of the LSST footprint or 4MOST in the south could realize many of these gains; DESI, 4MOST, Subaru/PFS, or MSE would all be well-suited for DDF surveys. The most efficient solution would be a new wide-field, highly-multiplexed spectroscopic instrument in the southern hemisphere with >6>6m aperture. In two companion white papers we present gains from deep, small-area MOS and from single-target imaging and spectroscopy.Comment: Submitted to the call for Astro2020 science white papers; tables with estimates of telescope time needed for a supernova host survey can be seen at http://d-scholarship.pitt.edu/id/eprint/3604

    Deep Multi-object Spectroscopy to Enhance Dark Energy Science from LSST

    Get PDF
    Community access to deep (i ~ 25), highly-multiplexed optical and near-infrared multi-object spectroscopy (MOS) on 8-40m telescopes would greatly improve measurements of cosmological parameters from LSST. The largest gain would come from improvements to LSST photometric redshifts, which are employed directly or indirectly for every major LSST cosmological probe; deep spectroscopic datasets will enable reduced uncertainties in the redshifts of individual objects via optimized training. Such spectroscopy will also determine the relationship of galaxy SEDs to their environments, key observables for studies of galaxy evolution. The resulting data will also constrain the impact of blending on photo-z's. Focused spectroscopic campaigns can also improve weak lensing cosmology by constraining the intrinsic alignments between the orientations of galaxies. Galaxy cluster studies can be enhanced by measuring motions of galaxies in and around clusters and by testing photo-z performance in regions of high density. Photometric redshift and intrinsic alignment studies are best-suited to instruments on large-aperture telescopes with wider fields of view (e.g., Subaru/PFS, MSE, or GMT/MANIFEST) but cluster investigations can be pursued with smaller-field instruments (e.g., Gemini/GMOS, Keck/DEIMOS, or TMT/WFOS), so deep MOS work can be distributed amongst a variety of telescopes. However, community access to large amounts of nights for surveys will still be needed to accomplish this work. In two companion white papers we present gains from shallower, wide-area MOS and from single-target imaging and spectroscopy.Comment: Science white paper submitted to the Astro2020 decadal survey. A table of time requirements is available at http://d-scholarship.pitt.edu/36036

    A Two-Gene Signature, SKI and SLAMF1, Predicts Time-to-Treatment in Previously Untreated Patients with Chronic Lymphocytic Leukemia

    Get PDF
    We developed and validated a two-gene signature that predicts prognosis in previously-untreated chronic lymphocytic leukemia (CLL) patients. Using a 65 sample training set, from a cohort of 131 patients, we identified the best clinical models to predict time-to-treatment (TTT) and overall survival (OS). To identify individual genes or combinations in the training set with expression related to prognosis, we cross-validated univariate and multivariate models to predict TTT. We identified four gene sets (5, 6, 12, or 13 genes) to construct multivariate prognostic models. By optimizing each gene set on the training set, we constructed 11 models to predict the time from diagnosis to treatment. Each model also predicted OS and added value to the best clinical models. To determine which contributed the most value when added to clinical variables, we applied the Akaike Information Criterion. Two genes were consistently retained in the models with clinical variables: SKI (v-SKI avian sarcoma viral oncogene homolog) and SLAMF1 (signaling lymphocytic activation molecule family member 1; CD150). We optimized a two-gene model and validated it on an independent test set of 66 samples. This two-gene model predicted prognosis better on the test set than any of the known predictors, including ZAP70 and serum β2-microglobulin

    Reactivation of Kaposi's sarcoma-associated herpesvirus by natural products from Kaposi's sarcoma endemic regions

    Get PDF
    Kaposi’s sarcoma (KS) and its causative agent, Kaposi’s sarcoma associated herpesvirus (KSHV/HHV-8), a gamma2 herpesvirus, have distinctive geographical distributions that are largely unexplained. We propose the “oncoweed” hypothesis to explain these differences, namely that environmental cofactors present in KS endemic regions cause frequent reactivation of KSHV in infected subjects, leading to increased viral shedding and transmission leading to increased prevalence of KSHV infection as well as high viral load levels and antibody titers. Reactivation also plays a role in the pathogenesis of KSHV-associated malignancies. To test this hypothesis, we employed an in vitro KSHV reactivation assay that measured increases in KSHV viral load in KSHV infected primary effusion lymphoma (PEL) cells and screened aqueous natural product extracts from KS endemic regions. Of 4,842 extracts from 38 countries, 184 (5%) caused KSHV reactivation. Extracts that caused reactivation came from a wide variety of plant families, and extracts from Africa, where KSHV is highly prevalent, caused the greatest level of reactivation. Time course experiments were performed using 28 extracts that caused the highest levels of reactivation. The specificity of the effects on viral replication was examined using transcriptional profiling of all viral mRNAs. The array data indicated that the natural extracts caused an ordered cascade of lytic replication similar to that seen after induction with synthetic activators. These in vitro data provide support for the “oncoweed” hypothesis by demonstrating basic biological plausibility

    CANDELS: The progenitors of compact quiescent galaxies at z~2

    Get PDF
    We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.Comment: Submitted to the Astrophysical Journal Letters, 6 pages, 4 figure
    corecore