3,151 research outputs found

    Evidence for a Hard Ionizing Spectrum from a z=6.11 Stellar Population

    Get PDF
    We present the Magellan/FIRE detection of highly-ionized CIV 1550 and OIII] 1666 in a deep infrared spectrum of the z=6.11 gravitationally lensed low-mass galaxy RXC J2248.7-4431-ID3, which has previously-known Lyman-alpha. No corresponding emission is detected at the expected location of HeII 1640. The upper limit on HeII paired with detection of OIII] and CIV constrains possible ionization scenarios. Production of CIV and OIII] requires ionizing photons of 2.5-3.5 Ryd, but once in that state their multiplet emission is powered by collisional excitation at lower energies (~0.5 Ryd). As a pure recombination line, HeII emission is powered by 4 Ryd ionizing photons. The data therefore require a spectrum with significant power at 3.5 Ryd but a rapid drop toward 4.0 Ryd. This hard spectrum with a steep drop is characteristic of low-metallicity stellar populations, and less consistent with soft AGN excitation, which features more 4 Ryd photons and hence higher HeII flux. The conclusions based on ratios of metal line detections to Helium non-detection are strengthened if the gas metallicity is low. RXJ2248-ID3 adds to the growing handful of reionization-era galaxies with UV emission line ratios distinct from the general z=2-3 population, in a way that suggests hard ionizing spectra that do not necessarily originate in AGN.Comment: 7 pages, 4 figures, 1 table. Accepted for publication to ApJ

    Greedy Connectivity of Geographically Embedded Graphs

    Full text link
    We introduce a measure of {\em greedy connectivity} for geographical networks (graphs embedded in space) and where the search for connecting paths relies only on local information, such as a node's location and that of its neighbors. Constraints of this type are common in everyday life applications. Greedy connectivity accounts also for imperfect transmission across established links and is larger the higher the proportion of nodes that can be reached from other nodes with a high probability. Greedy connectivity can be used as a criterion for optimal network design

    Zeeman Relaxation of Cold Atomic Iron and Nickel in Collisions with 3He

    Get PDF
    We have measured the ratio of the diffusion cross-section to the angular momentum reorientation cross-section in the colliding Fe-3He and Ni-3He systems. Nickel (Ni) and iron (Fe) atoms are introduced via laser ablation into a cryogenically cooled experimental cell containing cold (< 1 K) 3He buffer gas. Elastic collisions rapidly cool the translational temperature of the ablated atoms to the helium temperature. The cross-section ratio is extracted by measuring the decays of the atomic Zeeman sublevels. For our experimental conditions, thermal energy is comparable to the Zeeman splitting. As a result, thermal excitations between Zeeman sublevels significantly impact the observed decay. To determine the cross-section ratio accurately, we introduce a model of Zeeman state dynamics that includes thermal excitations. We find the cross-section ratio for Ni-3He = 5 x 10^3 and Fe-3He <= 3 x 10^3 at 0.75 K in a 0.8 T magnetic field. These measurements are interpreted in the context of submerged shell suppression of spin relaxation as studied previously in transition metals and rare earth atoms.Comment: 10 pages, 5 figures; submitted to Phys. Rev.

    Single-Particle Density of States of a Superconductor with a Spatially Varying Gap and Phase Fluctuations

    Get PDF
    Recent experiments have shown that the superconducting energy gap in some cuprates is spatially inhomogeneous. Motivated by these experiments, and using exact diagonalization of a model d-wave Hamiltonian, combined with Monte Carlo simulations of a Ginzburg-Landau free energy functional, we have calculated the single-particle density of states LDOS(ω,r)(\omega,r) of a model high-Tc_c superconductor as a function of temperature. Our calculations include both quenched disorder in the pairing potential and thermal fluctuations in both phase and amplitude of the superconducting gap. Most of our calculations assume two types of superconducting regions: α\alpha, with a small gap and large superfluid density, and β\beta, with the opposite. If the β\beta regions are randomly embedded in an α\alpha host, the LDOS on the α\alpha sites still has a sharp coherence peak at T=0T = 0, but the β\beta component does not, in agreement with experiment. An ordered arrangement of β\beta regions leads to oscillations in the LDOS as a function of energy. The model leads to a superconducting transition temperature TcT_c well below the pseudogap temperature Tc0T_{c0}, and has a spatially varying gap at very low TT, both consistent with experiments in underdoped Bi2212. Our calculated LDOS(ω,r)(\omega,r) shows coherence peaks for TTcT T_c, in agreement with previous work considering phase but not amplitude fluctuations in a homogeneous superconductor. Well above TcT_c, the gap in the LDOS disappears.Comment: 37 pages, 12 figures. Accepted by Phys. Rev. B. Scheduled Issue: 01 Nov 200

    Dynamic phase transition properties and hysteretic behavior of a ferrimagnetic core-shell nanoparticle in the presence of a time dependent magnetic field

    Full text link
    We have presented dynamic phase transition features and stationary-state behavior of a ferrimagnetic small nanoparticle system with a core-shell structure. By means of detailed Monte Carlo simulations, a complete picture of the phase diagrams and magnetization profiles have been presented and the conditions for the occurrence of a compensation point TcompT_{comp} in the system have been investigated. According to N\'{e}el nomenclature, the magnetization curves of the particle have been found to obey P-type, N-type and Q-type classification schemes under certain conditions. Much effort has been devoted to investigation of hysteretic response of the particle and we observed the existence of triple hysteresis loop behavior which originates from the existence of a weak ferromagnetic core coupling Jc/JshJ_{c}/J_{sh}, as well as a strong antiferromagnetic interface exchange interaction Jint/JshJ_{int}/J_{sh}. Most of the calculations have been performed for a particle in the presence of oscillating fields of very high frequencies and high amplitudes in comparison with exchange interactions which resembles a magnetic system under the influence of ultrafast switching fields. Particular attention has also been paid on the influence of the particle size on the thermal and magnetic properties, as well as magnetic features such as coercivity, remanence and compensation temperature of the particle. We have found that in the presence of ultrafast switching fields, the particle may exhibit a dynamic phase transition from paramagnetic to a dynamically ordered phase with increasing ferromagnetic shell thickness.Comment: 12 pages, 12 figure

    An ongoing secondary task can reduce the illusory truth effect

    Get PDF
    IntroductionPeople are more likely to believe repeated information—this is known as the Illusory Truth Effect (ITE). Recent research on the ITE has shown that semantic processing of statements plays a key role. In our day to day experience, we are often multi-tasking which can impact our ongoing processing of information around us. In three experiments, we investigate how asking participants to engage in an ongoing secondary task in the ITE paradigm influences the magnitude of the effect of repetition on belief.MethodsUsing an adapted ITE paradigm, we embedded a secondary task into each trial of the encoding and/or test phase (e.g., having participants count the number of vowels in a target word of each trivia claim) and calculated the overall accuracy on the task.ResultsWe found that the overall ITE was larger when participants had no ongoing secondary task during the experiment. Further, we predicted and found that higher accuracy on the secondary task was associated with a larger ITE.DiscussionThese findings provide initial evidence that engaging in an ongoing secondary task may reduce the impact of repetition. Our findings suggest that exploring the impact of secondary tasks on the ITE is a fruitful area for further research

    The three-dimensional random field Ising magnet: interfaces, scaling, and the nature of states

    Get PDF
    The nature of the zero temperature ordering transition in the 3D Gaussian random field Ising magnet is studied numerically, aided by scaling analyses. In the ferromagnetic phase the scaling of the roughness of the domain walls, wLζw\sim L^\zeta, is consistent with the theoretical prediction ζ=2/3\zeta = 2/3. As the randomness is increased through the transition, the probability distribution of the interfacial tension of domain walls scales as for a single second order transition. At the critical point, the fractal dimensions of domain walls and the fractal dimension of the outer surface of spin clusters are investigated: there are at least two distinct physically important fractal dimensions. These dimensions are argued to be related to combinations of the energy scaling exponent, θ\theta, which determines the violation of hyperscaling, the correlation length exponent ν\nu, and the magnetization exponent β\beta. The value β=0.017±0.005\beta = 0.017\pm 0.005 is derived from the magnetization: this estimate is supported by the study of the spin cluster size distribution at criticality. The variation of configurations in the interior of a sample with boundary conditions is consistent with the hypothesis that there is a single transition separating the disordered phase with one ground state from the ordered phase with two ground states. The array of results are shown to be consistent with a scaling picture and a geometric description of the influence of boundary conditions on the spins. The details of the algorithm used and its implementation are also described.Comment: 32 pp., 2 columns, 32 figure

    Revision rates after primary hip and knee replacement in England between 2003 and 2006

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;: Hip and knee replacement are some of the most frequently performed surgical procedures in the world. Resurfacing of the hip and unicondylar knee replacement are increasingly being used. There is relatively little evidence on their performance. To study performance of joint replacement in England, we investigated revision rates in the first 3 y after hip or knee replacement according to prosthesis type. &lt;b&gt;Methods and Findings&lt;/b&gt;: We linked records of the National Joint Registry for England and Wales and the Hospital Episode Statistics for patients with a primary hip or knee replacement in the National Health Service in England between April 2003 and September 2006. Hospital Episode Statistics records of succeeding admissions were used to identify revisions for any reason. 76,576 patients with a primary hip replacement and 80,697 with a primary knee replacement were included (51% of all primary hip and knee replacements done in the English National Health Service). In hip patients, 3-y revision rates were 0.9% (95% confidence interval [CI] 0.8%–1.1%) with cemented, 2.0% (1.7%–2.3%) with cementless, 1.5% (1.1%–2.0% CI) with “hybrid” prostheses, and 2.6% (2.1%–3.1%) with hip resurfacing (p &lt; 0.0001). Revision rates after hip resurfacing were increased especially in women. In knee patients, 3-y revision rates were 1.4% (1.2%–1.5% CI) with cemented, 1.5% (1.1%–2.1% CI) with cementless, and 2.8% (1.8%–4.5% CI) with unicondylar prostheses (p &lt; 0.0001). Revision rates after knee replacement strongly decreased with age. &lt;b&gt;Interpretation&lt;/b&gt;: Overall, about one in 75 patients needed a revision of their prosthesis within 3 y. On the basis of our data, consideration should be given to using hip resurfacing only in male patients and unicondylar knee replacement only in elderly patients
    corecore