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Recent experiments have shown that the superconducting energy gap in some cuprates is spatially inhomo-
geneous. Motivated by these experiments, and using exact diagonalization of a model d-wave Hamiltonian,
combined with Monte Carlo simulations of a Ginzburg-Landau free energy functional, we have calculated the
single-particle local density of states LDOS �� ,r� of a model high-Tc superconductor as a function of tem-
perature. Our calculations include both quenched disorder in the pairing potential and thermal fluctuations in
both phase and amplitude of the superconducting gap. Most of our calculations assume two types of super-
conducting regions: � with a small gap and large superfluid density, and � with the opposite. If the � regions
are randomly embedded in an � host, the LDOS on the � sites still has a sharp coherence peak at T=0, but the
� component does not, in agreement with experiment. An ordered arrangement of � regions leads to oscilla-
tions in the LDOS as a function of energy. The model leads to a superconducting transition temperature Tc well
below the pseudogap temperature Tc0 and has a spatially varying gap at very low T, both consistent with
experiments in underdoped Bi2212. Our calculated LDOS �� ,r� shows coherence peaks for T�Tc, which
disappear for T�Tc, in agreement with previous work considering phase but not amplitude fluctuations in a
homogeneous superconductor. Well above Tc, the gap in the LDOS disappears.
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I. INTRODUCTION

According to low temperature scanning tunneling micros-
copy �STM� experiments, the local density of states �LDOS�
of some cuprate materials have spatial variations.1–8 Among
the cuprates, Bi2Sr2CaCu2O8+x �Bi2212� is one of the most
extensively studied in STM experiments. The LDOS spec-
trum shows that some regions of that material, which we will
call � regions, have a small energy gap with large and nar-
row coherence peaks �reminiscent of the spectra observed in
bulk superconducting materials�, while other regions, which
we will call � regions, have a larger gap, but smaller and
broadened peaks �which are reminiscent of the spectra seen
in bulk pseudogap phase of some materials. These inhomo-
geneities occur on length scales of order 30 Å. Because at
low doping concentrations � regions with “good” supercon-
ductivity are immersed in more metallic or semiconducting �
regions, some workers have made an analogy between these
materials and granular superconductors:4,9 superconducting
domains spatially separated from one another by nonsuper-
conducting regions, but connected through proximity effect
or Josephson tunneling.

At present there is no general agreement regarding the
origin of the inhomogeneities in the cuprate
superconductors—whether they are in charge density, spin
density, LDOS, or other properties.10 One hypothesis is that
these inhomogeneities originate in a process of self-
organization due to competing orders.11–17 In another ap-
proach, the spatially varying properties of the cuprates are
attributed to crystal defects or impurities. In particular, it has
been suggested that the inhomogeneities in the LDOS origi-
nate in the random spatial distribution of dopant atoms near
the copper oxide �CuO2� planes.3,18–21

Several workers have studied the LDOS of inhomoge-
neous superconductors at low T. For example, Ghosal et al.22

have calculated the LDOS of a strongly disordered s-wave
superconducting layer in two dimensions �2D�, solving the
Bogoliubov-de Gennes equations self-consistently. They
have also done similar work on a model of d-wave
superconductivity.23 Fang et al.,7 using a Green’s function
approach, computed the zero temperature LDOS of a model
lattice Hamiltonian in which one small region of the lattice
has an different �either suppressed or enhanced� pairing
strength than the rest; they find good agreement with experi-
ments. Cheng and Su24 have also explored how the LDOS is
affected by a single spatial inhomogeneity in the pairing
strength of a BCS Hamiltonian; they find that an inhomoge-
neity with an LDOS most closely resembling the experimen-
tal results is produced by an inhomogeneity with a cone-
shaped distribution of the pairing strength; this work thus
suggests that it is the small-length-scale variation of the
pairing strength that causes incoherence in the LDOS. Mayr
et al.25 have studied a phenomenological model with
quenched disorder and observed a pseudogap in the LDOS
caused by a mixture of antiferromagnetism and superconduc-
tivity, while Jamei et al.26 have investigated the low order
moments of the LDOS and their relation to the local form of
the Hamiltonian.

In this paper we propose a phenomenological approach to
study the effect of inhomogeneities on the LDOS in a model
for cuprate superconductors. The model is a mean-field BCS
Hamiltonian with d-wave symmetry, in which the pairing
field is inhomogeneous and also undergoes thermal fluctua-
tions in both phase and amplitude at finite temperatures T. It
has been argued10 that the superconducting state of optimally
doped to overdoped cuprates is well described by the BCS
theory which includes a d-wave gap and scattering from de-
fects outside the CuO2 plane. Instead of including such de-
fects explicitly in our BCS Hamiltonian, we implicitly in-
clude their possible effects through inhomogeneities of the
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pairing-field amplitude. Furthermore, instead of self-
consistently solving the Bogoliubov-de Gennes equations re-
sulting from this model, we obtain the magnitude and phase
of the complex pairing field from Monte Carlo �MC� simu-
lations based on a Ginzburg-Landau �GL� free energy func-
tional. Thus the procedure is as follows. First, we set the
parameters of the GL free energy functional from experi-
ments. Next, using MC simulations of this free energy, we
obtain the pairing-field amplitudes which we then include in
the BCS Hamiltonian. Finally, we diagonalize the latter in
order to obtain the LDOS.

Now in optimally or nearly optimally doped Bi2212, the
layers consist of randomly distributed � regions immersed in
a majority background of � regions.3 We therefore choose
GL parameters so as to reproduce this morphology at T=0,
then carry out simulations at both zero and finite T to obtain
the LDOS in the different spatial regions.

At T=0 we compare these simulation results to those ob-
tained using ordered instead of random arrangements of in-
homogeneities. We find that the LDOS of the random sys-
tems much more closely resemble experiment. Specifically,
regions with a small gap have sharp coherence peaks, while
large-gap regions show lower and broader peaks. By con-
trast, systems with ordered inhomogeneities have LDOS
spectra with sharp coherence peaks which oscillate as a func-
tion of energy. In the ordered systems, the coherence peaks
in the small-gap regions strongly resemble those observed in
a homogeneous small-gap system. But the spectral peaks in
the large-gap regions dramatically differ from those in the
corresponding homogeneous and disordered cases.

Because the spectra of disordered systems more closely
resemble experiments, we have also studied the evolution of
the LDOS in these systems with increasing T. We consider
both T�Tc and T�Tc, where Tc is the phase-ordering tran-
sition temperature �equivalent to the Kosterlitz-Thouless
transition temperature for this 2D system�. In both the � and
� regions, we find that the spectral gap starts to fill in as T
increases, and the spectral peaks broaden and are reduced in
height. However, even above Tc the LDOS is still suppressed
at low energies, in comparison to the normal state. This re-
sult agrees with a previous study27,28 which considered ther-
mal fluctuations of the phase but not of the magnitude of the
complex pairing field, and included no quenched disorder.

We have also studied the T dependence of the magnitude
of the pairing field, its thermal fluctuations, and the effective
superfluid density of our disordered system. We find that the
phase-ordering temperature is greatly reduced from the spa-
tial average of the mean-field transition temperatures appear-
ing in the GL free energy functional. This reduction is due to
both thermal fluctuations and quenched disorder in our
model.

Although our work involves a non-self-consistent solution
of a d-wave BCS Hamiltonian, it differs from previous stud-
ies of this kind7,22–24 because it includes thermal fluctuations
as well as quenched disorder in the pairing-field amplitude.
For our model, quenched disorder is crucial in obtaining
LDOS spectra which depend smoothly on energy and are
also consistent with the observed low and broad peaks in the
� regions.

The rest of this article is organized as follows: In Section
II, we present the BCS model Hamiltonian. In Section III, we

derive the discrete form of the GL free energy functional
used in our calculations. We also discuss simple estimates of
the phase ordering temperature, our choice of model param-
eters and our method of introducing inhomogeneities into
our model. Section IV describe the computational methods
used at both zero and finite temperature. These methods in-
clude a classical MC approach to treat thermal fluctuations,
exact diagonalization to obtain the LDOS, and the reduction
of finite size effects on the LDOS by the inclusion of a mag-
netic field. Section V presents our numerical results at both
T=0 and finite T. A concluding discussion and summary are
given in Section VI.

II. MODEL

A. Microscopic Hamiltonian

We consider the following Hamiltonian:

HBCS = 2 �
�i,j�,�

tijci�
† cj� + 2�

�i,j�
�	ijci↓cj↑ + c.c.� − 
�

i,�
ci�

† ci�.

�1�

Here, ��i,j� denotes a sum over distinct pairs of nearest neigh-
bors on a square lattice with N sites, and cj�

† creates an elec-
tron with spin � �↑ or ↓� at site j. 
 is the chemical potential,
while 	ij denotes the strength of the pairing interaction be-
tween sites i and j. tij is the hopping energy, which we write
as

tij = − thop, �2�

where thop�0.
Following a similar approach to that of Eckl et al.,27 we

take 	ij to be given by

	ij =
1

4

�	i� + �	 j�
2

ei�ij , �3�

where

�ij = � ��i + � j�/2, if bond �i, j� is in the x direction

��i + � j�/2 + � , if bond �i, j� is in the y direction
� ,

�4�

and

	 j = �	 j�ei�j �5�

is the value of the complex superconducting order parameter
at site j. We will refer to the lattice over which the sums in
�1� are carried out as the atomic lattice �in order to distin-
guish it from the XY lattice, which will be described in the
next section.� The first term in Eq. �1� thus corresponds to
the kinetic energy; the second term is a BCS type of pairing
interaction with d-wave symmetry, and the third term is the
energy associated with the chemical potential.

Eq. �1� may also be written

HBCS = †Â − N
 , �6�

where
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ci↑

ci↓
† �, i = 1,N �7�

and

Â = � t̂ 	̂*

	̂ − t̂* . �8�

Here t̂ and 	̂ are N�N matrices with elements t̂i j �t̂i j = tij, as
given by Eq. �2� if i and j are nearest neighbors, t̂i j =−
 if

i= j, and t̂i j =0 otherwise� and 	̂ij �	̂ij =	ij, as given by Eq.

�3� if i and j are nearest neighbors, and 	̂ij =0 otherwise�.
Let Û be the unitary matrix that diagonalizes Â, i.e.,

B̂ = Û†ÂÛ, B̂ diagonal. �9�

We can then rewrite �6� as

HBCS = �†B̂� − N
 , �10�

with � defined by

 = Û� . �11�

If we make the following definitions:

� 	 
�i↑

�i↓
† �, i = 1,N �12�

and

Û 	 �uj�ri� − v j
*�ri�

v j�ri� uj
*�ri�

, i, j = 1,N , �13�

where i labels the row and j the column of N�N matrices,
then we can see that �11� is the typical Bogoliubov-de
Gennes transformation,29,30

ci↑ = �
j=1

N

�� j↑uj�ri� − � j↓
† v j

*�ri�� ,

ci↓ = �
j=1

N

�� j↓uj�ri� + � j↑
† v j

*�ri�� . �14�

Thus � is a 2N-dimensional column matrix and Û is a 2N
�2N-dimensional square matrix.

Denoting the diagonal elements of the matrix B̂ by En, we
can use �8�, �9�, and �13� to obtain

� t̂ 	̂*

	̂ − t̂*�un�ri�
vn�ri�

 = En�un�ri�
vn�ri�

 . �15�

Equation �15� is the eigenvalue problem which must be
solved in order to compute the local density of states, as we
describe next.

B. Explicit expression for the local density of states

We wish to compute the local density of states, denoted
LDOS �� ,ri�, as a function of the energy � and lattice posi-

tion ri= �xi ,yi� at both zero and finite temperature T. Given
the value of the superconducting order parameter 	i at each

lattice site, the matrix 	̂ can be constructed and the LDOS
�� ,r , �	i�� can be computed through22

LDOS��,ri,�	i�� = �
n,En�0

��un�ri��2��� − En�

+ �vn�ri��2��� + En�� . �16�

At T=0 all the phases �i are the same, since this choice
minimizes the energy of the superconducting system. Thus,
in this case, once we know ��	i��, we can solve Eq. �15� for
un�ri�, vn�ri�, and En, and use this solution in �16�. At finite T,
since 	i will thermally fluctuate, we need a procedure to
obtain an average of �16� over the relevant configurations of
�	i�. We explain that procedure next.

III. MODEL FOR THERMAL FLUCTUATIONS

At finite T we compute LDOS �� ,ri� by performing an
average of LDOS �� ,ri , �	i�� over different configurations
�	i�. Those configurations are obtained, assuming that the
thermal fluctuations of �	i� are governed by a GL free energy
functional F, which is treated as an effective classical Hamil-
tonian.

The GL free energy functional has been widely studied
and applied to a variety of systems. It has been extensively
used to study granular conventional superconductors.31–38

Other studies have focused on the use of the GL theory to
describe the phase diagram of extreme type II
superconductors,39 the influence of defects on the structure
of the order parameter of d-wave superconductors,40,41 and
the effect of thermal fluctuations on the heat capacity of
high-temperature superconductors.38,42 Yet other researchers
have derived the GL equations for vortex structures from
microscopic theories.43 There has also been interest studying
the nature of the transition in certain parameter ranges for
this type of model.44,45

In this section we discuss a procedure for obtaining a
suitably discrete form of F and determining its coefficients
from experiments. �The final form of F is given by Eq. �29�.�
We also discuss a way to estimate the phase-ordering tem-
perature using this model, the choice of the parameters that
determine the GL coefficients, and finally a method of intro-
ducing inhomogeneities into the model.

A. Discrete form of the Ginzburg-Landau free energy

For a continuous superconductor in the absence of a vec-
tor potential, the GL free energy density has the form

F� = �
 T

Tc0
− 1�����2 +

b

2
����4 +

�

2m* �����2. �17�

Since ����2 and F� have dimensions of inverse volume, and
energy per unit volume, it follows that � and b have dimen-
sions of energy, and �energy�volume�, respectively.

The squared penetration depth �2�T� and zero-temperature
GL coherence length �0 are related to the coefficients of F
by29
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� =
�2

2m*�0
2 , �18�

and

b = 8�
B
2
��0�

�0
�2

�19�

where 
B
2 �5.4�10−5 eV Å3 is the square of the Bohr mag-

neton.
Let us assume that the position-dependent superconduct-

ing energy gap 	i at ri is related to �i�, as in conventional
BCS theory, through

��i��
2 =

�i

9.38bi
� 	i

kBTc0i
�2

, �20�

where we have also assumed that Tc0, b, and � are functions
of position. The validity of �20� can be verified by noting that
in the absence of fluctuations F� is minimized by

��i��
2 =

�i

bi

1 −

T

Tc0i
� . �21�

Combining �21� with �20�, we obtain, at T=0,

�	i�0��2 = 9.38�kBTc0i�2. �22�

This result agrees well with the experiment provided �i� Tc0
is interpreted as the temperature at which an energy gap
opens according to ARPES experiments, and �ii� 	�0� is
taken as the low-temperature �T�Tc� magnitude of the gap
observed in ARPES and tunneling experiments.46

In order to obtain a discrete version of the free energy
functional, we integrate the free energy density �17� over
volume to yield the free energy

F =� F�dV . �23�

Assuming that ���constant within a volume �0
2d �where �0

is the zero-temperature coherence length and d is thickness
of the superconducting layer�, we can discretize the layer
into M cells of volume �0

2d. Using �20�, we can then write

F

K1
= �

i=1

M 
 T

Tc0i
− 1� 1

�i
2�0�

� 	i

kBTc0i
�2

+ �
i=1

M
1

2�9.38�
1

�i
2�0�

� 	i

kBTc0i
�4

+ �
�ij�
� 	i

�i�0�kBTc0i
−

	 j

� j�0�kBTc0j
�2

, �24�

where

K1 	
�4d

32�9.38��m*2
B
2 �25�

K1�2866 eV Å2 if d=10 Å. Except for d, K1 is independent
of material-specific parameters.

In �24� the sums are performed over what we will call the
XY lattice, which is not necessarily the same as the atomic

lattice used in �1�. In �24�, 	i= �	i�e−i�i is the value of the
superconducting order parameter on the ith cell of the XY
lattice. The third sum is carried out over distinct pairs of
nearest-neighbors cells �ij�.

In order to see how the XY lattice and the atomic lattice
are related, we now analyze some of the relevant length
scales in our problem. Typically, the linear dimension of the
XY lattice cell is taken to be the T=0 coherence length �0 of
the material in the superconducting layer. In a cuprate super-
conductor, e.g., Bi2212, �0�15 Å, while the lattice constant
of the microscopic �atomic� Hamiltonian of Eq. �1�, i.e., the
distance between the Cu sites in the CuO2 plane, is a0
�5.4 Å.46 Thus in this case, a single XY cell would contain
about nine sites of the atomic lattice, on each of which the
superconducting order parameter would have the same value
	i.

It is convenient to introduce a dimensionless supercon-
ducting gap

�i 	
	i

E0
, �26�

and a dimensionless temperature

t 	
kBT

E0
, �27�

where E0 is an arbitrary energy scale which will be specified
below. We can then rewrite �24� as

F

K1
= �

i=1

M 
 t

tc0i
− 1� 1

�i
2�0�tc0i

2 ��i�2 + �
i=1

M
1

2�9.38�
1

�i
2�0�tc0i

4 ��i�4

+ �
�ij�
�� �i

�i�0�tc0i
�2

+ � � j

� j�0�tc0j
�2

−
2��i��� j�

�i�0�tc0i� j�0�tc0j
cos��i − � j� .  �28�

In our calculations, we will employ periodic boundary con-
ditions. In that case, sums of the form ��ij��ai+aj� can be
replaced by 4�iai, and

F

K1
= �

i=1

M 
 t

tc0i
+ 3� 1

�i
2�0�tc0i

2 ��i�2 + �
i=1

M
1

2�9.38�
1

�i
2�0�tc0i

4 ��i�4

− �
�ij�

2��i��� j�
�i�0�tc0i� j�0�tc0j

cos��i − � j� . �29�

Eq. �29� is the most general form for the GL free energy
functional considered in our calculations. In our simulations
we allow both the amplitude ��� and the phase � of � to
undergo thermal fluctuations.

B. Thermal averages

As mentioned at the beginning of this section, at finite T
we compute LDOS �� ,ri� by performing an average of
LDOS �� ,ri , ��i�� over different configurations ��i�. Those
configurations are obtained assuming that the thermal fluc-
tuations of ��i� are governed by the GL free energy func-
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tional F described above. F is treated as an effective classical
Hamiltonian, and thermal averages � � of quantities Q, such
as LDOS �� ,ri�, are obtained through

�Q� =
� �i=1

N
d2�ie

−F/kBTQ���i��

Z
, �30�

where Z is the canonical partition function,

Z =� �
i=1

N

d2�ie
−F/kBT. �31�

C. Estimate of the Kosterlitz-Thouless transition

If amplitude fluctuations are neglected, the Hamiltonian
�29� would correspond to an XY model on a square lattice. If
the system is homogeneous, this XY model undergoes a
Kosterlitz-Thouless transition at a temperature

kBTc � 0.89JXY , �32�

where JXY is the coupling constant between spins,

HXY = − JXY�
�ij�

cos��i − � j� . �33�

From Eqs. �29� and �33�, the XY coupling between sites i and
j is given by

JXY,ij�t� 	
2K1��i��� j�

�i�0�tc0i� j�0�tc0j
. �34�

If we approximate �i�t� by the value that minimizes F� when
fluctuations are neglected,

��i�t�� � �9.38�1 − t/tc0i�tc0i, �35�

then

JXY,ij�t� �
2�9.38���1 − t/tc0i��1 − t/tc0j�

�i�0�� j�0�
. �36�

which in the homogeneous case reduces to

JXY�t� �
18.76�1 − t/tc0�

�2�0�
. �37�

This result and Eq. �32� give

Tc �
Tc0

1 + Tc0/�1
, �38�

where

�1 =
�0.89��18.76�K1

�2�0�kB
. �39�

Eq. �38� can also be rewritten as

tc �
tc0

1 + tc0�2
, �40�

where �2=
E0

kB�1
. Using ��0�=1800 Å and d=10 Å, we obtain

�1=172 K. Finally, if we choose E0=200 meV �for reasons
given below�, we obtain �2=13.54.

Expressions �38� and �40� will typically overestimate the
phase-ordering �or Kosterlitz-Thouless� transition tempera-
ture Tc. Both thermal fluctuations of ��� and quenched disor-
der will generally reduce Tc below these estimates.

D. Choice of parameters

Next, we describe our choice of parameters entering both
the microscopic model �Eq. �1��, and that for thermal fluc-
tuations �Eq. �29��. In a typical cuprate, such as underdoped
Bi2212, the low-T superconducting gap is �50 meV, the
hopping integral thop�200 meV, ��0��1800 Å, and the
pseudogap opens at Tc0�200 K�20 meV/kB. Also, the lat-
tice constant of the CuO2 lattice plane is a0�5.4 Å, while
�0�15 Å. If in Eqs. �26� and �27� we choose E0= thop
=200 meV, then, using those expressions, we obtain ���0� �
=0.25 and tc0=0.1. We can substitute these values into Eq.
�38� to obtain an estimate for the phase-ordering tempera-
ture, namely, Tc=130 K. Our actual simulations, carried out
in the presence of thermal fluctuations of the gap magnitude
and quenched disorder, actually yield a lower Tc, as ex-
pected.

We have carried out calculations using this set of param-
eters, but also with smaller values of �0, in order to treat
larger XY lattices. Suppose we wish to carry out a simulation
on a 16�16 XY lattice. If we use the parameter values de-
scribed above, we would have a 48�48 atomic lattice. To
compute the density of states on this lattice, we would have
to diagonalize 4608�4608 matrices �see Eq. �8��. Each such
diagonalization takes �1 h on a node for serial jobs of the
OSC Pentium 4 Cluster, which has a 2.4 GHz Intel P4 Xeon
processor. Since thermal averages require several hundred
diagonalizations, a 16�16 XY lattice is too large using these
parameters. If, however, we choose a smaller coherence
length, we will have fewer atomic sites per XY cell, and
hence a smaller matrix to diagonalize for a 16�16 XY lat-
tice. In the BCS formalism, �0�vF / �	�, where vF is the
Fermi velocity. Thus, if �0 is n times smaller than the experi-
mental value, then, for fixed vF 	 and hence tc0, will be n
times larger than that value.

E. Inhomogeneities

As noted above, experiments show that in some cuprates
the energy gap is spatially inhomogeneous.1–8 Typically, in
some spatial regions, which we call � regions, the LDOS has
a small gap and large coherence peaks, while in other re-
gions, the � regions, the LDOS has a larger gap and reduced
coherence peaks. The percentage of the area occupied by �
and � regions, respectively, depends on the doping concen-
tration. In Bi2212, for example, a nearly optimally doped
sample �hole dopant level �0.18� has �10% of the area
occupied by � regions, while for an underdoped sample
�hole dopant level �0.14�, the areal fraction of the � regions
is about �50%.4

We introduce spatial inhomogeneities into our model by
including a binary distribution of tc0i’s. Typically, we chose
the smaller value of tc0i so that, for a homogeneous system,
the gap 	i�0� resulting from our model �Eq. �35�� approxi-
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mately equals that observed in experiments �for further de-
tails, see the discussion in Sec. III D entitled “Choice of
parameters”�. We refer to XY cells with this small tc0i as �
cells. For the � cells, on the other hand, we assume a value
tc0i K times larger than that of the � cells. We obtained our
best results by choosing K=3. We have carried out simula-
tions considering both an ordered and a random distribution
of � cells.

To determine the distribution of �i�0�, we use the connec-
tion between the local superfluid density ns,i�T� and �i�T�
implied by Eqs. �18�–�20�,

ns,i�T� = ��i��T��2 =
�2

�9.38�16�
B
2m*

�	i�T��2

�kBTc0i�2

1

�i
2�0�

.

�41�

Thus, at fixed but very low T, since �	i�0� /kBTc0i�2 is inde-
pendent of position according to our model �see Eq. �22��,
ns,i�T��1/�i

2�0�. Since the coherence peaks in the local den-
sity of states are observed to be lower where the gap is large,
we will assume that tc0i and �i

2�0� are correlated according to
the equation

�i
2�0� =

�2�0�
tc0

tc0i �42�

where tc0 and �2�0� are obtained from the observed bulk
properties of the material under consideration. �For example,
we typically obtain tc0 from �22� where we take �	i�0�� as the
average of the low-temperature gap observed in experiments,
and ��0�=1800 Å.� Substituting �42� into Eq. �36� gives, for
t� tc0i and t� tc0j,

JXY,ij �
1

�tc0itc0j

. �43�

IV. COMPUTATIONAL METHOD

A. Monte Carlo

We compute thermal averages of several quantities, in-
cluding LDOS �� ,ri ,T�, using a Monte Carlo �MC� tech-
nique. Thus, we estimate integrals of the form �30� using

�Q� =
1

Nm
�
j=1

Nm

Q���i�� , �44�

where Nm is the number of configurations ��i� used to com-
pute the average, and the configurations ��i� are obtained
using the standard Metropolis algorithm47,48 as we now de-
scribe. We first set the values of the tc0i and �i�0� in each XY
lattice cell as described in the preceding section. This com-
pletely determines the GL free energy functional F �Eq.
�29�.� We then set the initial values of �i so as to minimize F.
Next we perform attempts to change the value of each �i by
�i, where �i is the complex number �i=�i,re+ i�i,im, and �i,re
and i�i,im are random numbers with a uniform distribution in
the range �−�0 ,�0�. We define a MC step as an attempt to
change the value �i on each of the XY cells. The value of �0

is in turn adjusted at each temperature so that attempts to
change � have a success rate of 50%. Attempts to change �i
are accepted with a probability exp�−	F /kBT�, where 	F
=F��1 ,�2 , . . . ,�i+�i , . . . ,�M�−F��1 ,�2 , . . . ,�i , . . . ,�M�. In
this way, different configurations ��i� are obtained.

In order to select which of those configurations ��i� to use
in �44�, we first made an estimate of the phase autocorrela-
tion time �,28 in units of MC steps, at each temperature. We
chose �=min��� ,500�, where �� is implicitly defined by

c����
c�0�

=
1

e
, �45�

and c���� is a space average of the phase autocorrelation
function,48

c���� =
1

M
�
j=1

M

��ei�j����e−i�j�0�� − �ei�j������e−i�j�0��� . �46�

Once we estimated �, we performed 20� MC steps to allow
the system to equilibrate, then we carried out an additional
100� MC steps at each T for each disorder realization. Dur-
ing those 100� MC steps, we sampled ��i� every � MC step,
thus obtaining Nm=100 configurations to use in �44� to esti-
mate the quantities of interest. We also performed longer
simulations, averaging over Nm=300 configurations to com-
pute the LDOS, and Nm=5000 configurations to compute �,
���, and the root-mean-square fluctuations ������ �defined be-
low�, obtaining virtually the same results as with Nm=100
configurations.

When carrying out the simulation, we need a mapping
between the sites of the XY lattice and those of the atomic
lattice. To do this mapping, we divide the atomic lattice into
regions of area �0��0. Each such region constitutes an XY
cell. All atomic sites within such a cell are assigned the same
value of the order parameter �i. Clearly, the lattice constant
�0 of the XY lattice must be an integer multiple of the atomic
lattice constant a0. Thus, if our XY lattice has L2 sites, then
the atomic lattice has �L�0 /a0�2 sites.

We diagonalize all matrices numerically using LAPACK49

subroutine “zheev,” which can find all of the eigenvectors
and eigenvalues of a complex, Hermitian matrix. We calcu-
late the density of states by distributing the eigenvalues into
bins of width 	�. The � function appearing in �16� is ap-
proximated by

��x� =
1

�

�

�2 + x2 , �47�

where we choose ��	��0.01thop.

B. Reducing finite-size effects through inclusion of a magnetic
field

To reduce finite-size effects on LDOS �� ,r�, we use a
method introduced by Assaad.50 The basic idea of this
method is to break the translational invariance of thop through
the substitution thop→ tij�L� in Eq. �2�. This is done so as to
improve convergence of the quantities of interest, such as
LDOS �� ,r�, as a function of the size of the atomic lattice
N.28 However, tij�N� must still satisfy
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lim
N→�

tij�N� = − thop, �48�

so that the original form of tij is recovered in the thermody-
namic limit.

Assaad showed that if one makes the substitution thop
→ tij�N� through the inclusion of a finite magnetic field, the
convergence of the density of states is greatly improved. The
magnetic field enters through the Peierls phase factor

tij = − thope
iAi�j�, �49�

with

Ai�j� =
2�

�0
�

i�

j�

A� �r�� · dr� . �50�

Here A� �r�� is the vector potential at r�; �0=hc /e is the flux
quantum corresponding to one electronic charge e, and the
integral runs along the line from site i to site j.

We use a gauge which allows periodic boundary condi-
tions, and with which the flux through the atomic lattice can

be chosen to be any integer multiple of �0.50,51 Let i�

= �xêxa0 ,yêya0�, êx and êy are unit vectors in the x and y
directions, and x and y are integers in the range �0,N−1�.
Then

Ai�j� =�
±

2�m

N2 x , if j� = i� ± a0êy

−
2�m

N
y , if j� = i� + a0êx and x = N − 1

2�m

N
y , if j� = i� − a0êx and x = 0

0, otherwise

� ,

�51�

where m is the number of flux quanta through the atomic
lattice. We have chosen m=1, so that the magnetic field in
our system has the smallest nonzero value possible.

V. RESULTS

A. Zero temperature

Figure 1 shows the spatially averaged density of states,
DOS ���, obtained by summing the local density of states,
LDOS �� ,r�, over all sites r on a 48�48 atomic lattice with
homogeneous tc0 at zero temperature. The zero temperature
pairing strength is given by ���0� � =�9.38tc0, as shown by
Eqs. �22� and �26�. For the case tc0=0, the pairing strength is
zero, and we observe the standard Van Hove peak52 for a 2D
tight-binding band at �=0. For finite pairing strength we
observe a suppression of the density of states near �=0,
while strong coherence peaks occur at �����0��.

In Fig. 2, we compare the density of states DOS ��� for a
32�32 atomic lattice containing a single quantum of mag-
netic flux �q=1�, with a larger �48�48� atomic lattice con-
taining no magnetic field �q=0�.

Both systems are assumed homogeneous with tc0=0.14.
As can be seen, the two are very similar except at low ���,

where the magnetic field is known to induce a change in the
density of states.53 Note also that the zero-field DOS ��� is
less smooth than that of the lattice with one quantum of flux,
even though the zero-field lattice is larger. In the zero-field
case we have determined the density of states using a bin
width 	�=0.09, while in the finite-field case we used 	�
=0.01. �The frequencies and widths are given in units of
thop.� We have also carried out a similar calculation for q
=1 and a 48�48 atomic lattice; the results are similar to
those shown for the 32�32 lattice, except that the density of
states at �=0 is reduced by about a third. Figure 2 and the
results just mentioned, show that including the magnetic field
is very useful in smoothing the density of states plots.

Before presenting our results for inhomogeneous systems,
we briefly describe our method of introducing inhomogene-
ities into our model. We work with atomic lattices of size
L�L, in which the sites are divided into groups of 2�2.
Each of these groups forms an XY cell, within which the
superconducting order parameter � is kept uniform. The

FIG. 1. The zero-temperature density of states DOS ��� versus
energy � for three homogeneous systems described by the mean-
field transition temperatures tc0=0, tc0=0.14, and tc0=0.42. Simu-
lations were carried out on 48�48 atomic lattices, with a magnetic
field included, as described in the text, to reduce finite-size effects.
Energies � are given in units of thop.

FIG. 2. A comparison of the T=0 DOS of a small system �32
�32 atomic lattice� containing one quantum of magnetic field �q
=1� to that of a larger �48�48� system with no magnetic field �q
=0�. Both systems are homogeneous with tc0=0.14. Except at very
low energies, the magnetic field produces little change in the shape
of the curve.
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value of � in each cell is determined by the GL free energy
Eq. �29�, which in turn depends on the set of values �tc0i� and
��c0i�. Because tc0i and �c0i are correlated in our model, once
we have the set �tc0i�, the GL free energy is completely de-
termined and � at each cell can be computed through the MC
method described above.

In Fig. 3�a� and 3�b�, we show results for two inhomoge-
neous systems. Both systems consist of 48�48 atomic lat-
tices in which a fraction c�=0.11 of the XY cells are of the �
type with tc0=0.42, while the remainder of the cells are of
the � type, with tc0=0.14. The curves are spatial averages of
the LDOS �� ,r� over the � and � cells. In �a�, they corre-
spond to a system in which the � cells form an ordered array,
while the curves in part �b� correspond to a system in which
the � cells are distributed randomly through the lattice. For
comparison, Fig. 3�c� shows results of two homogeneous
systems: one with all � cells and one with all � cells.

The dotted line in Fig. 3�a� represents an average of
LDOS �� ,r� over the � cells. It differs significantly from the
� curve of the homogeneous case, �dotted curve in Fig. 3�c��.
Specifically, instead of the single sharp, and much higher,

peak in the homogeneous � case, there is a lower peak which
is shifted slightly to smaller ��� and also has strong oscilla-
tions as a function of � �probably because of the ordered
arrangement of the � cells�. The largest maximum of this
oscillating peak is quite sharp, however, and occurs at a dis-
tinctly smaller energy than in the homogeneous case.

The solid line in Fig. 3�a� corresponds to an average of
the LDOS �� ,r� over � cells. It differs less from the homo-
geneous � system �solid curve in Fig. 3�c�� than in the �
case; the main peak is not much shifted in energy, and it is
slightly lower and broader than the homogeneous case. How-
ever, an additional peak does appear at the same position as
the larger peak of the inhomogeneous � curve described
above.

In Fig. 3�b�, we show the corresponding density of states’
plots for a system with randomly distributed � cells. In this
case we observe that the LDOS �� ,r�, averaged over � cells,
has slightly lower and broader peaks than that of the homo-
geneous � system shown in Fig. 3�c�, but the peaks still
occur at the same energy in both cases: ��0.42. However,
the average of the LDOS �� ,r� over the � cells is drastically
different from the homogeneous � case: the main peak is
greatly broadened, compared to the homogeneous � case.

In Figs. 4 and 5, we show representative ordered and dis-
ordered arrangements of � and � cells �for an 18�18 XY
lattice�, similar to those used in the calculations of Figs. 3�a�
and 3�b�. In our density of states calculations for disordered
arrangements, we typically average over about five realiza-
tions of the disorder, and use 24�24 XY lattices rather than
the 18�18 shown in the schematic picture.

In Fig. 6, we show plots analogous to Fig. 3, but for a
much larger concentration of � cells �c�=0.89�. Part �a�
shows results for an ordered array of � cells immersed in a

FIG. 3. A comparison of the zero-temperature DOS of mixed
�-� systems �a� and �b�, and pure systems �c�. In the mixed sys-
tems, c�=0.11 is the concentration of � cells �tc0=0.42�, immersed
in a background of � cells �tc0=0.14�. �a� Ordered array of � cells;
see Fig 4. �b� Disordered configuration of � cells; see Fig 5. Curves
are obtained by space-averaging LDOS �� ,r� over atomic sites
within � or � cells, respectively. In the disordered case, averages
were also carried out over five different realizations of the disorder.
�c� DOS ��� for two pure systems containing only � and only �
cells. We use a 48�48 atomic lattice; the size of an XY cell �� or
�� is 2�2.

FIG. 4. Shown is an 18�18 XY lattice in which the � cells form
an ordered array: � cells �white squares� are immersed in a back-
ground of � cells �gray squares�. Each XY cell corresponds to an
area of �0��0, and contains four atomic sites.
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background of � cells. The simple, sharp peaks of the homo-
geneous � case �dotted curves in Fig. 3�c� and Fig. 6�c�� are
split into two sharp peaks at a slightly smaller energy, while
the sharp peaks of the homogeneous alpha regions �solid
curve in Fig. 3�c�� become even sharper and shifted toward
higher energies, leading to a reduction in the density of states
near �=0. Also, in the inhomogeneous � curve of Fig. 6�a�,
a weak second peak appears at the same energy as one of the
peaks in the inhomogeneous � curve.

The case of a disordered distribution of � regions im-
mersed in a background of � regions is shown in Fig. 6�b�.
The peaks of the curves corresponding to both the � and �
regions become lower and broader than in the homogeneous
cases Fig. 6�c�. The peak in the � curve occurs at approxi-
mately the same energy as in the homogeneous case. The
corresponding inhomogeneous � peak, on the other hand,
occurs at a higher energy relative to the homogeneous case.

B. Finite temperatures

We have carried out a finite-T study for the system topol-
ogy most similar to the experimental one:4 a random distri-
bution of � regions immersed in a background of � regions.
Calculated results for such a system at T=0 are shown in
Fig. 3�b�. Because more matrix diagonalizations are required
at finite T to obtain the relevant thermal averages, we work
with 32�32 atomic lattices, instead of the 48�48 used at
T=0. Since the computational time needed for one diagonal-
ization scales with the linear size L of the system like L6,
each diagonalization takes about one-tenth the time in these

smaller systems. Fortunately, the reduction of finite-size ef-
fects achieved by introducing a magnetic field leads to good
results even for this relatively small system size. This can be
seen by comparing the t=0 results in Fig. 7, which are ob-
tained for a 32�32 atomic lattice, to the corresponding re-
sults shown in Fig. 3�b� for a 48�48 atomic lattice.

Besides the partial densities of states, we calculate several
additional quantities at finite t: the effective superfluid den-
sity ��t�, the thermal- and space-averaged values of ��� in the
� and � regions, and the relative fluctuations ���� of ��� av-
eraged over each of those regions.

We compute the superfluid density � by averaging the
diagonal elements ��� ��=x ,y� of the helicity modulus ten-
sor �̂. Thus, we compute �= ��xx+�yy� /2, where37

�xx =
1

M��
�i,j�

�xi − xj�2JXY,ij cos��i − � j��
−

1

Mt����i,j� �xi − xj�JXY,ij sin��i − � j�2�
+

1

Mt��
�i,j�

�xi − xj�JXY,ij sin��i − � j��2
. �52�

Here xi is the x coordinate of ith XY cell i and M is the total
number of XY cells. JXY,ij is the effective XY coupling be-
tween XY cells and is given by Eq. �34�, while �i is the phase

FIG. 5. Shown is an 18�18 XY lattice with a disordered ar-
rangement of � cells �white squares� immersed in a background of
� cells �gray squares�. Each cell corresponds to an area of �0��0,
and contains four atomic sites. This Figure contains a particular
realization of disorder. Density of states results for disordered sys-
tems are averaged over five different disorder realizations.

FIG. 6. This is same as Fig. 3 but with a high concentration
c�=0.89 of � cells in the mixed systems. The ordered configuration
corresponds to an ordered arrangement of � cells within �.
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of �i and � � denotes a canonical average. �yy is defined by
the analogous expression with xi replaced by yi. In our com-
putations, we have set the lattice constant aXY of the XY
lattice to be unity.

The mean-square order parameter averaged over the �
region is computed from

�����2��� =
1

M�
�
i��

���i�2� , �53�

where the sum is carried out over all M� XY cells of type �.
�����2��� is defined similarly. The mean magnitude of the
order parameter in the � and � regions, denoted �������� and
��������, are defined by an equation analogous to Eq. �53�.
We compute the relative fluctuations ������� of ��� within XY
cells of type � from the definition

������� = �����i�2� − ���i��2

���i��2 
�

, �54�

where the triangular brackets denote a thermodynamic aver-
age, and �. . .�� denotes a space average over the � sites.
������� is computed analogously. In systems with disorder,

the square brackets denote a disorder average as well as a
space average.

Figure 7 shows the partial LDOS �� ,r� averaged over �
and � cells, at both t=0 and finite t. The systems shown have
a fraction c�=0.1 of � sites randomly distributed. At t=0 the
� regions show strong, sharp coherence peaks while the �
regions have a larger gap, but lower and broader peaks.
When the temperature is increased to t=0.015, the heights of
both peaks are reduced, and their widths are increased, but
the � peak is still quite sharp, because the system still has
phase coherence. This temperature is still below the phase-
ordering temperature of tc�0.03, as discussed below. As t is
increased still further, to t=0.035 and t=0.055, the two den-
sity of states’ peaks broaden still further and there is scarcely
any residue of a gap in the density of states. There is now no
sign of a real coherence peak in either the � or the � regions.

In Fig. 8, we show the superfluid density ��t�, for the
model just described but for various concentrations c� of the
�randomly distributed� � cells. For c�=0.1, the phase-
ordering transition temperature tc�0.03 in these units. Thus,
of the plots in Fig. 7, two are below and two are above the
phase-ordering transition.

In Figs. 9 and 10, we show the thermal, spatial, and dis-
order averages of ��� over the � and � regions, denoted
�������� and ��������, while Figs. 11 and 12 show the corre-
sponding averages of the root-mean-square fluctuations ����.
A number of features deserve mention. First, the average ���
is, of course, larger in the � regions than in the � regions, but
the root-mean-square fluctuations are comparable in each of
the two regions. Second, the increases in the averages of ���
above the phase-ordering temperature is an artifact of a
Ginzburg-Landau free energy functional as we now explain
in detail.

The asymptotic behavior of ���2 as t→�, for homoge-
neous systems, can be obtained in the following way: At very
high temperatures t� tc0, the first term in �29� goes like
����2, the second goes like ����4 / t, and the third �coupling�
term goes like ����2 / t. We can then neglect the contribution
of the third term, whence at large t the XY cells are effec-

FIG. 7. The spatial average, at several different temperatures t,
of the local density of states LDOS �� ,r� over two different types
of cells: the � cells, where tc0=0.14, and the � cells, where tc0

=0.42. The � cells occupy 10% �c�=0.1� of the total area, while the
� cells occupy the rest. The simulations were performed using a
32�32 atomic lattice; the XY cells are 2�2 atomic cells. The
phase-ordering temperature for this system is tc�0.03 �see the
curve corresponding to c�=0.1 in Fig. 8�.

FIG. 8. The superfluid density ��t� versus temperature t, for
systems with different concentrations c� of � cells distributed ran-
domly over the atomic lattice. � cells have tc0=0.42, whereas �
cells have tc0=0.14, However, the coupling constant between two
nearest-neighbor cells �ij� includes, at low t, a factor 1 /�tc0itc0j,
which results in a suppression of the superfluid density in systems
with large concentrations of � cells �see Eq. �43��.
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tively decoupled. The thermal average of ���2 for an isolated
cell is given by

����2� =

�
0

�

���d������2 exp�− f ���2 − g���4�

�
0

�

���d���exp�− f ���2 − g���4�
. �55�

In our case,

f =
K1

tc0
3 �2�0�E0

�56�

and

g =
K1

2�9.38�tc0
4 �2�0�E0t

. �57�

If f and g are real and positive, as in the present case, the
integrals appearing in �55� can be carried out, with the result

����2� = −
f

2g
+

exp�− f2/4g�
�g� erfc�f/2�g�

. �58�

Here erfc�z�=1−erf�z�, erf�z� being the Gaussian error func-
tion. Using an asymptotic expansion54 for erf�f /2�g�, appli-

cable when f /�g�1 as in the present case, we can show that

lim
t→�

����2� → 1/f . �59�

Substituting f from Eq. �56� leads to

lim
t→�

����2� →
tc0
3 �2�0�E0

K1
� 0.6 �60�

where the last approximate equality is obtained using the
parameters we have discussed above, namely, K1
�2866 eV Å2; ��0�=1800 Å; tc0=0.14; and E0=200 meV.

On the other hand, using Eq. �35�, we obtain

lim
t→0

����2� � 0.2. �61�

Thus, our model introduces an unphysical finite value of
����2� at large t. This behavior has been observed in other
studies of similar models,45 while in other investigations this
feature is less obvious because of the parameters used.36 In
our case, since we are interested in temperatures t� tc� tc0
or t� tc� tc0, this unphysical high-temperature behavior
should not be relevant to our calculations.

Our results for �������� and �������� suggest an explanation
for one feature in the plots of the LDOS �see Fig. 7�.
Namely, the � peak generally occurs at higher � than it
would in a superconductor made entirely of � material. This

FIG. 10. The same as Fig. 9, but averaged over the � cells.

FIG. 11. The relative thermal fluctuations ������t��� of ���, aver-
aged over the � cells, for systems with different concentrations c�

of � as shown in Fig. 8.

FIG. 12. The same as Fig. 11, but averaged over the � cells.

FIG. 9. Space, thermally, and disorder-averaged ��������, aver-
aged over � cells, for systems with different concentrations c� of �
cells, as described in the caption of Fig. 8. In an � cell tc0=0.14
while tc0=0.42 in a � cell.
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shift occurs because, when the � and � regions are mixed,
�������� is larger than its value in a homogeneous � system
�as we further discuss below�. This behavior of �������� can
be seen in Fig. 10, where this quantity is plotted for different
values of c�. Clearly, at low t, ��� increases as c� decreases.
For the homogeneous � system, ���t=0��=1.29, as can be
obtained directly from Eq. �35�; this value is shown as an
open circle at t=0. This upward shift in the �������� would be
difficult to measure, since a pure � material may not exist.

The behavior of �������� has an analog, in our model, in
the corresponding behavior in the � cells. Specifically, if �
cells are the minority component in a � host, ����� tends to be
substantially smaller than in pure � systems: the smaller the
concentration c�=1−c�, the smaller the value of ����� in
those regions �see Fig. 9�. The behavior of ����� in both �
and � regions basically follows from our earlier discussion,
according to which ���2 is larger in regions with a small gap.

VI. DISCUSSION

We have presented a phenomenological model for the
temperature-dependent single-particle density of states in a
BCS superconductor with a dx2−y2 order parameter. Our
model includes both inhomogeneities in the gap magnitude
and fluctuations in the phase and amplitude of the gap. While
some of these features have been included in previous mod-
els for the density of states �e.g., phase fluctuations in a
homogeneous d-wave superconductor, inhomogeneities in
the gap magnitude at T=0�, our model is more general, and
thus potentially more realistic for some cuprate supercon-
ductors.

Our main goal is to examine the properties of an inhomo-
geneous superconductor, including many effects which are
likely to be significant in real cuprate materials. The ampli-
tude and phase fluctuations are treated by a discretized GL
free energy functional, while the density of states is obtained
by solving the Bogoliubov-de Gennes equations for a super-
conductor with a tight-binding density of states and a dx2−y2

energy gap.
In all our calculations, we have assumed that the super-

conductor has two types of regions: �, with a small gap but
a high superfluid density; and �, with a large gap and small
superfluid density. This assumption appears consistent with
many experiments on the high-Tc cuprates, especially in the
underdoped regime.4 If we assume that the minority compo-
nent is of type �, embedded in an � host, we find that the
local density of states at T=0 at the � sites has sharp coher-
ence peaks, whereas that of the � sites is substantially broad-
ened. This behavior is similar to experiment.3,4

This description applies to a disordered distribution of �
sites in an � host. If the � sites are, instead, arranged on a
lattice, the local density of states on the � sites is sharper, but
also has distinct oscillations as a function of energy. Since
such oscillations are absent in experiments, the actual � re-
gions, if they exist as a minority component, are probably
distributed randomly.

In the reverse case of � regions embedded randomly in a
� host, neither component has an extremely sharp density of

states peak. While the � peak is still quite sharp, it is broader
than the � peak in the �-minority case. This result suggests
that, if one component occurs only as isolated regions, its
minority status tends to broaden its coherence peaks.

Our results also show that the local density of states is
strongly affected by phase fluctuations. This feature has al-
ready been found for a homogeneous d-wave
superconductor,27 but here we demonstrate it in an inhomo-
geneous superconductor. The most striking effect of finite T
is that the coherence peak in the � component disappears
above the phase-ordering transition temperature Tc. The �
component does not show a coherence peak even at very low
temperatures, but nonetheless this peak too is significantly
broadened above Tc. For T well above Tc, there is no appre-
ciable gap in the local density of states either at the � or the
� sites.

Our calculations include thermal fluctuations in the am-
plitude as well as the phase of �. In general, thermal ampli-
tude fluctuations seem to have only a minor influence on the
local density of states. By contrast, the variations in ��� due
to quenched disorder �i.e., the presence of � and � regions in
our model� strongly affect the local density of states, as we
have already described. To check on the influence of purely
thermal amplitude fluctuations, we have calculated the den-
sity of states of a homogeneous � superconductor with both
phase and amplitude fluctuations, and have compared this to
a similar calculation with only phase fluctuations. We find
that the additional presence of amplitude fluctuations has
little effect on the density of states.

To smooth the local density of states, we include in our
density of states’ calculations a magnetic field equal to a flux
hc /e in the entire sample area, following the method of
Assaad.50 This field greatly smooths the local density of
states, which otherwise varies extremely sharply with energy,
because of the many degenerate states of a finite sample at
zero field. Our calculated density of states does, of course,
correspond to a physical magnetic field, and thus differs
slightly from that at zero field. For example, in a homoge-
neous system with a finite d-wave gap, the LDOS ��� goes
to zero as ���→0. By contrast, at finite field, the LDOS
approaches a constant value at low ���. With no gap, our
calculated DOS with nonzero field is indistinguishable from
that of a conventional 2D tight-binding band �see Fig. 1�,
because the field is low �typically around 0.002 flux quanta
per atomic unit cell�. We conclude that the weak magnetic
field very effectively smooths the calculated LDOS in a finite
2D sample with a d-wave gap, but produces a density of
states similar to that at zero field, except at very low ���.

Although we have included this magnetic field in the
Bogoliubov-de Gennes equations, we have omitted it from
the GL free energy functional, which is, thus, that of a zero-
field system. As we now discuss, we believe that this numeri-
cal scheme should indeed converge to the correct physical
result for a zero magnetic field in the limit of a large com-
putational sample.

As noted earlier, we introduce the vector potential into the
LDOS calculation in order to smooth the resulting density of
states. In the limit of a large system, the effect of the vector
potential, corresponding to a single quantum of flux, should
become negligible, since the flux density becomes very
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small. This is already suggested by our calculated results for
the two system sizes we consider �see Fig. 2 and the corre-
sponding discussion�. Even with a finite superconducting
gap, the vector potential affects the LDOS very little, except
at low energies; moreover, even this effect becomes smaller
as the sample size increases. Therefore, in the limit of a large
enough sample, our approach should give a very similar
LDOS to one calculated with no vector potential. Hence, it is
reasonable to use this approach in combination with a zero-
field GL free energy functional to calculate the LDOS at
finite temperatures.

If we were to introduce a similar field into the GL func-
tional, we believe that it would have a substantial effect, not
due to smoothing, on the phase ordering. There would be,
not only the XY-like phase transition, as at zero field, but
also additional phase fluctuations arising from the extra
field-induced vortex. Since this extra vortex is absent at zero
field, these effects would be irrelevant to the zero-field sys-
tem we wish to model. By contrast, introducing a field into
the Bogoliubov-de Gennes equations, as we do, provides de-
sirable smoothing with little change in the calculated LDOS;
moreover, even this slight change decreases with increasing
sample size. Therefore, we believe that the best way to ob-
tain a smooth LDOS at both zero and finite temperatures is to
introduce the vector potential into the Bogoliubov-de Gennes
equations for smoothing purposes, but not to include it in the
GL free energy functional. Our numerical results suggest that
this procedure is indeed justified.

One feature of our numerical results may seem counterin-
tuitive. In our model, the � component is assumed to have a

gap three times smaller than that of �, but has a larger local
superfluid density, i.e., a smaller penetration depth. We then
find that the gap in the � region is smaller in a two-
component system with both � and � regions, than it is in a
pure � system. This counterintuitive result, however,
emerges naturally from our discrete GL model, which is
minimized if the quantities 	i / ��i�0�Tc0i� are equal. For our
model, �i�0� is smaller in the small-gap material. It would be
of interest if experimental evidence of this behavior were
found in a real material.

In our calculation, the LDOS is obtained from a
Bogoliubov-de Gennes Hamiltonian whose parameters are
determined by the Ginzburg-Landau functional. In fact, it
should be possible to proceed in the opposite direction, and
obtain the parameters of the functional from the LDOS. Spe-
cifically, the energy required to change a phase difference by
a given amount depends on an integral over the LDOS. Thus,
the calculation we have presented in this paper can, in prin-
ciple, be made fully self-consistent.
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