2,313 research outputs found

    Students Fail to Transfer Knowledge of Chromosome Structure to Topics Pertaining to Cell Division

    Get PDF
    Cellular processes that rely on knowledge of molecular behavior are difficult for students to comprehend. For example, thorough understanding of meiosis requires students to integrate several complex concepts related to chromosome structure and function. Using a grounded theory approach, we have unified classroom observations, assessment data, and in-depth interviews under the theory of knowledge transfer to explain student difficulties with concepts related to chromosomal behavior. In this paper, we show that students typically understand basic chromosome structure but do not activate cognitive resources that would allow them to explain macromolecular phenomena (e.g., homologous pairing during meiosis). To improve understanding of topics related to genetic information flow, we suggest that instructors use pedagogies and activities that prime students for making connections between chromosome structure and cellular processes

    The DNA Triangle and Its Application to Learning Meiosis

    Get PDF
    Although instruction on meiosis is repeated many times during the undergraduate curriculum, many students show poor comprehension even as upper-level biology majors. We propose that the difficulty lies in the complexity of understanding DNA, which we explain through a new model, the DNA triangle. The DNA triangle integrates three distinct scales at which one can think about DNA: chromosomal, molecular, and informational. Through analysis of interview and survey data from biology faculty and students through the lens of the DNA triangle, we illustrate important differences in how novices and experts are able to explain the concepts of ploidy, homology, and mechanism of homologous pairing. Similarly, analysis of passages from 16 different biology textbooks shows a large divide between introductory and advanced material, with introductory books omitting explanations of meiosis-linked concepts at the molecular level of DNA. Finally, backed by textbook findings and feedback from biology experts, we show that the DNA triangle can be applied to teaching and learning meiosis. By applying the DNA triangle to topics on meiosis we present a new framework for educators and researchers that ties concepts of ploidy, homology, and mechanism of homologous pairing to knowledge about DNA on the chromosomal, molecular, and informational levels

    Cloaked Facebook pages: Exploring fake Islamist propaganda in social media

    Get PDF
    This research analyses cloaked Facebook pages that are created to spread political propaganda by cloaking a user profile and imitating the identity of a political opponent in order to spark hateful and aggressive reactions. This inquiry is pursued through a multi-sited online ethnographic case study of Danish Facebook pages disguised as radical Islamist pages, which provoked racist and anti-Muslim reactions as well as negative sentiments towards refugees and immigrants in Denmark in general. Drawing on Jessie Daniels’ critical insights into cloaked websites, this research furthermore analyses the epistemological, methodological and conceptual challenges of online propaganda. It enhances our understanding of disinformation and propaganda in an increasingly interactive social media environment and contributes to a critical inquiry into social media and subversive politics

    Implementing the Five-A Model of technical refinement: Key roles of the sport psychologist

    Get PDF
    There is increasing evidence for the significant contribution provided by sport psychologists within applied coaching environments. However, this rarely considers their skills/knowledge being applied when refining athletes’ already learned and well-established motor skills. Therefore, this paper focuses on how a sport psychologist might assist a coach and athlete to implement long-term permanent and pressure proof refinements. It highlights key contributions at each stage of the Five-A Model—designed to deliver these important outcomes—providing both psychomotor and psychosocial input to the support delivery. By employing these recommendations, sport psychologists can make multiple positive contributions to completion of this challenging task

    Dispersal of Adult Culex Mosquitoes in an Urban West Nile Virus Hotspot: A Mark-Capture Study Incorporating Stable Isotope Enrichment of Natural Larval Habitats

    Get PDF
    Dispersal is a critical life history behavior for mosquitoes and is important for the spread of mosquito-borne disease. We implemented the first stable isotope mark-capture study to measure mosquito dispersal, focusing on Culex pipiens in southwest suburban Chicago, Illinois, a hotspot of West Nile virus (WNV) transmission. We enriched nine catch basins in 2010 and 2011 with 15N-potassium nitrate and detected dispersal of enriched adult females emerging from these catch basins using CDC light and gravid traps to distances as far as 3 km. We detected 12 isotopically enriched pools of mosquitoes out of 2,442 tested during the two years and calculated a mean dispersal distance of 1.15 km and maximum flight range of 2.48 km. According to a logistic distribution function, 90% of the female Culex mosquitoes stayed within 3 km of their larval habitat, which corresponds with the distance-limited genetic variation of WNV observed in this study region. This study provides new insights on the dispersal of the most important vector of WNV in the eastern United States and demonstrates the utility of stable isotope enrichment for studying the biology of mosquitoes in other disease systems.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the ExoMars Trace Gas Orbiter and Curiosity Observations

    Get PDF
    The upper bound of 50 parts per trillion by volume for Mars methane above 5 km established by the ExoMars Trace Gas Orbiter, substantially lower than the 410 parts per trillion by volume average measured overnight by the Curiosity Rover, places a strong constraint on the daytime methane flux at the Gale crater. We propose that these measurements may be largely reconciled by the inhibition of mixing near the surface overnight, whereby methane emitted from the subsurface accumulates within meters of the surface before being mixed below detection limits at dawn. A model of this scenario allows the first precise calculation of microseepage fluxes at Gale to be derived, consistent with a constant 1.5 Ã 10Ăą 10 kg·mĂą 2·solĂą 1 (5.4 Ã 10Ăą 5 tonnes·kmĂą 2·yearĂą 1) source at depth. Under this scenario, only 2.7 Ã 104 km2 of Mars’s surface may be emitting methane, unless a fast destruction mechanism exists.Plain Language SummaryThe ExoMars Trace Gas Orbiter and the Curiosity Rover have recorded different amounts of methane in the atmosphere on Mars. The Trace Gas Orbiter measured very little methane (<50 parts per trillion by volume) above 5 km in the sunlit atmosphere, while Curiosity measured substantially more (410 parts per trillion by volume) near the surface at night. In this paper we describe a framework which explains both measurements by suggesting that a small amount of methane seeps out of the ground constantly. During the day, this small amount of methane is rapidly mixed and diluted by vigorous convection, leading to low overall levels within the atmosphere. During the night, convection lessens, allowing methane to build up near the surface. At dawn, convection intensifies and the nearĂą surface methane is mixed and diluted with much more atmosphere. Using this model and methane concentrations from both approaches, we are ableĂą for the first timeĂą to place a single number on the rate of seepage of methane at Gale crater which we find equivalent to 2.8 kg per Martian day. Future spacecraft measuring methane near the surface of Mars could determine how much methane seeps out of the ground in different locations, providing insight into what processes create that methane in the subsurface.Key PointsNighttime SAMĂą TLS seasonal cycle enrichment measurements and TGO sunset/sunrise measurements are not in oppositionMicroseepage fluxes must be local to Gale, range from 0.82 to 4.6 kg/sol, and are consistent with a constant source at depthLittle of Mars experiences microseepage unless a fast destruction mechanism exists or Gale is very unusualPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/1/grl59471-sup-0001-2019GL083800-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/2/grl59471_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151840/3/grl59471.pd

    CANDELS: The progenitors of compact quiescent galaxies at z~2

    Get PDF
    We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.Comment: Submitted to the Astrophysical Journal Letters, 6 pages, 4 figure

    Thank You to Our 2018 Peer Reviewers

    Full text link
    On behalf of the journal, AGU, and the scientific community, the Editors would like to sincerely thank those who reviewed manuscripts for Geophysical Research Letters in 2018. The hours reading and commenting on manuscripts not only improves the manuscripts but also increases the scientific rigor of future research in the field. We particularly appreciate the timely reviews, in light of the demands imposed by the rapid review process at Geophysical Research Letters. With the revival of the “major revisions” decisions, we appreciate the reviewers’ efforts on multiple versions of some manuscripts. Many of those listed below went beyond and reviewed three or more manuscripts for our journal, and those are indicated in italics. In total, 4,484 referees contributed to 7,557 individual reviews in journal. Thank you again. We look forward to the coming year of exciting advances in the field and communicating those advances to our community and to the broader public.Key PointIn total, 4,484 referees contributed to 7,557 individual reviews in journalPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152982/1/grl59194.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152982/2/grl59194_am.pd
    • 

    corecore