102 research outputs found

    Assessment of Chemical and Electronic Surface Properties of the Cu2ZnSn(SSe)4 after Different Etching Procedures by Synchrotron-based Spectroscopies

    Get PDF
    Kesterite Cu2ZnSn(S,Se)4 absorber layers with different [S]/([S]+[Se]) ratios were studied using XPS, UPS, Hard X-ray (HIKE) photoemission and the Near Edge X-ray Absorption Fine Structure spectroscopy (NEXAFS). The samples were prepared by IREC using sequentially sputtered metallic precursor stacks with metal ratios of [Cu]/([Zn]+[Sn])=0.80, [Zn]/[Sn]=1.20 followed by annealing under S+Se+Sn atmosphere. Different etching procedures were used depending on the sample's composition. It is shown that the surface composition varies from that of the bulk, especially for the Se-rich samples. Contamination with sulfur is detected after using a Na2S etching solution for the pure Se kesterite. A Cu-depleted surface was found for all samples before and after etching. HIKE measurements show a higher [Zn]/[Sn] ratio in the near surface region than on the very surface. This is explained by the fact, the etching procedure removes secondary phases from the very few surface layers, while some of ZnS(e) is still buried underneath. In order to investigate the band gap transition from the pure sulfide (1.5 eV) to the pure selenide (1eV), the valence and conduction band of the respective absorbers were probed. According to UPS and HIKE measurements, the relative distance between Fermi level (Ef) and valance band maximum (VBM) for sulfide sample was 130 meV larger than for selenide. Using NEXAFS on the copper, zinc and tin edges, the development of the conduction band with increasing [S]/([S]+[Se]) ratios was studied. Stoichiometric powder samples were used as reference materials. © 2015 Published by Elsevier Ltd.Peer ReviewedPostprint (published version

    Revealing the beneficial effects of Ge doping on Cu2ZnSnSe4 thin film solar cells

    Get PDF
    Kesterite (CZTSe) is a promising thin film photovoltaic absorber material due to its composition of more earth abundant materials compared to mature thin film photovoltaic technologies. Up to now, power conversion efficiencies are still lower and its main problem is the low open circuit voltage (Voc). Recently, a novel sintering approach using a nanometric Ge layer showed a large increase in device performance and especially in Voc. In this work, in-depth solar cell characterization as well as Raman and Photoluminescence studies of devices employing different Ge doped CZTSe absorber layers is presented. The main focus is to reveal the beneficial effects of Ge doping and furthermore investigate the interaction of Ge and Na. For low Ge doping an increase in charge carrier concentration is observed, resulting in devices with Voc of 460 mV, which corresponds to Voc deficits (Eg/q–Voc) of 596 mV a value comparable to current record devices. For high Ge amounts admittance spectroscopy measurements identified the appearance of a deep defect which can explain the observed deterioration of solar cell performance. Additional Na provided during crystallization of high Ge doped devices can reduce the density of this deep defect and recover device performance. These results indicate that Na plays an important role in defect passivation and we propose a defect model based in the interaction of group IV elements and Na with Cu vacancies

    Chemical bath deposition route for the synthesis of ultra-thin CuIn(S,Se)2 based solar cells.

    Get PDF
    CuIn(S,Se)2 (CISSe) photovoltaic grade thin films are usually grown by expensive vacuum based methods or chemical routes that require highly toxic precursors. In this work, we present the synthesis of CISSe absorbers by a simple chemical bath deposition (CBD) route. In the first step, In2S3/Cu2 − xS stack was deposited as a precursor by CBD on Mo-coated soda lime glass substrates, using respectively thioacetamide and N,N′ dimethylthiourea as S source. Then the CISSe thin films were synthesized by the precursor's selenization at 450 °C. The obtained films were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The tetragonal chalcopyrite structure of CISSe was identified by XRD and Raman, confirming that the major part of S was replaced by Se. SEM images show a compact and homogeneous film and by cross-section the thickness was estimated to be around 700 nm. Solar cells prepared with these absorbers exhibit an open circuit voltage of 369 mV, a short circuit current density of 13.7 mA/cm2 , a fill factor of 45% and an efficiency of 2.3%

    The importance of back contact modification in Cu2ZnSnSe4 solar cells: The role of a thin MoO2 layer

    Full text link
    Cu2ZnSn(SxSe1-x)4 (CZTSSe) photovoltaic absorbers could be the earth-abundant and low toxicity replacement for the already commercialized CuIn1-xGaxSe2 (CIGS) thin film technology. In order to make this possible, specific research efforts applied to the bulk, front and back interfaces must be performed with the aim of improving CZTSSe performance. In this paper the importance of back contact modification to obtain high efficiency Cu2ZnSnSe4 (CZTSe) solar cells and to increase a paramount and limiting parameter such as VOC is highlighted. Several Mo configurations (monolayer, bi-layer and tri-layer) with different electrical and morphological properties are investigated in CZTSe solar cells. An optimum tri-layer configuration in order to minimize overselenization of the back contact during thermal annealing while keeping reasonable electrical features is defined. Additionally, a thin intermediate MoO2 layer that results in a very effective barrier against selenization and innovative way to efficiently assist in the CZTSe absorber sintering is introduced. The use of this layer enhances grain growth and subsequently the efficiency of solar cells increases via major VOC and FF improvement. An efficiency increase from 7.2% to 9.5% is obtained using a Mo tri-layer with a 20 nm intermediate MoO2 layerThis research was supported by the Framework 7 program under the project KESTCELLS (FP7-PEOPLE-2012-ITN-316488), by MINECO (Ministerio de Economía y Competitividad de España) under the SUNBEAM project (ENE2013-49136-C4-1-R), and by European Regional Development Founds (ERDF, FEDER Programa Competitivitat de Catalunya 2007–2013). Authors from IREC and the University of Barcelona belong to the M-2E (Electronic Materials for Energy) Consolidated Research Group and the XaRMAE Network of Excellence on Materials for Energy of the “Generalitat de Catalunya”. M.E-R. thanks the MINECO for the FPI-MINECO (BES-2011-045774), Y.S. for the PTA fellowship (PTA2012-7852-A), SG for the FPI fellowship (BES-2014-068533), M.P. for the MINECO postdoctoral fellow (FPDI-2013-18968), E.S. and R.C. for the “Ramon y Cajal” fellowship (RYC-2011-09212) and (RYC-2011-08521) respectively, and H.X. thanks the “China Scholarship Council” fellowship (CSC Nº 201206340113

    Multiwavelength excitation Raman scattering analysis of bulk and 2 dimensional MoS2: vibrational properties of atomically thin MoS2 layers

    Full text link
    In order to deepen the knowledge of the vibrational properties of two-dimensional (2D) MoS2 atomic layers, a complete and systematic Raman scattering analysis has been performed using both bulk single-crystal MoS2 samples and atomically thin MoS2 layers. Raman spectra have been measured under non-resonant and resonant conditions using seven different excitation wavelengths from near-infrared (NIR) to ultraviolet (UV). These measurements have allowed us to observe and identify 41 peaks, among which 22 have not been previously experimentally observed for this compound, and characterize the existence of different resonant excitation conditions for the different excitation wavelengths. This has also included the first analysis of resonant Raman spectra that are achieved using UV excitation conditions. In addition, the analysis of atomically thin MoS2 layers has corroborated the higher potential of UV resonant Raman scattering measurements for the non-destructive assessment of 2D MoS2 samples. Analysis of the relative integral intensity of the additional first- and second-order peaks measured under UV resonant excitation conditions is proposed for the non-destructive characterization of the thickness of the layers, complementing previous studies based on the changes of the peak frequencies

    The importance of back contact modification in Cu2ZnSnSe4 solar cells: The role of a thin MoO2 layer

    Get PDF
    Cu2ZnSn(SxSe1−x)4 (CZTSSe) photovoltaic absorbers could be the earth-abundant and low toxicity replacement for the already commercialized CuIn1−xGaxSe2 (CIGS) thin film technology. In order to make this possible, specific research efforts applied to the bulk, front and back interfaces must be performed with the aim of improving CZTSSe performance. In this paper the importance of back contact modification to obtain high efficiency Cu2ZnSnSe4 (CZTSe) solar cells and to increase a paramount and limiting parameter such as VOC is highlighted. Several Mo configurations (monolayer, bi-layer and tri-layer) with different electrical and morphological properties are investigated in CZTSe solar cells. An optimum tri-layer configuration in order to minimize overselenization of the back contact during thermal annealing while keeping reasonable electrical features is defined. Additionally, a thin intermediate MoO2 layer that results in a very effective barrier against selenization and innovative way to efficiently assist in the CZTSe absorber sintering is introduced. The use of this layer enhances grain growth and subsequently the efficiency of solar cells increases via major VOC and FF improvement. An efficiency increase from 7.2% to 9.5% is obtained using a Mo tri-layer with a 20nm intermediate MoO2 layer

    Development of Cu2ZnSnSe4 Based Thin Film Solar Cells by PVD and Chemical Based Processes

    Get PDF
    [eng] Nowadays mono- and multicrystalline silicon have the highest market share of all PV technologies but thin film solar cells based on CdTe or Cu(In,Ga)Se2 (CIGS) absorbers recently show promising high power conversion efficiency values and due to their short energy payback time, minimal use of high purity material and low cost, they attract more and more attention. However, one concern of thin film PV based on CdTe or CIGS is the use of scare elements like tellurium or indium and gallium which could become a bottleneck if the technology wants to scale up to the terawatt level. Therefore, there is a high interest to replace these scare elements by more abundant ones and find suitable earth abundant photovoltaic absorbers. Cu2ZnSnSe4 (CZTSe) or Cu2ZnSnS4 (CZTS) and its sulphur-selenide solid solution are promising candidates to replace CIGS as absorber material due to its composition of more earth abundant elements. In literature CZTSe and CZTS are referred to as kesterite due to its crystal structure. However, there is still a large gap between power conversion efficiencies of solar cells based on kesterite absorber material and more established thin film solar cells, thus intensive research is still necessary to close this gap. The main goal of this thesis was to develop and optimize heterostructure solar cells based on Cu2ZnSnSe4 absorbers, by cost effective physical vapour deposition (PVD) and chemical based processes. Special focus is put on an improved understanding of the influence of the surface properties of kesterite absorbers on device performance and furthermore to optimize the front interface, i.e. buffer layer as well as the kesterite absorber layer itself. A detailed study investigating the influence of the surface chemistry on device performance is presented. After a chemical etching to remove unwanted ZnSe secondary phases formed during CZTSe absorber synthesis a low temperature post deposition annealing at 200ºC of the full solar cell is necessary to improve device efficiencies from below 3% to over 8%. X-ray photoelectron spectroscopy (XPS) surface analysis showed that this post deposition annealing promotes the diffusion of Zn towards the surface and Cu towards the bulk resulting in a Zn enriched and Cu depleted surface region, which is crucial for high device performance. Additionally experimental surface treatments confirm the necessity of a Cu-poor and Zn-rich surface and the reason for this beneficial surface composition are discussed in detail. Furthermore, the CdS buffer layer which is typically used in kesterite based heterostructures solar cells was optimized and allowed improvements in device performance of 1% absolute. This optimization was further extended to Cd-free ZnS(O,OH) buffer layer. Efficiencies close to that of CdS reference solar cells could be achieved using optimized ZnS(O,OH) buffer layer. Additionally to the front interface optimization, a Ge assisted crystallization process for nanocrystalline CZTSe precursors was developed which largely increase grain growth and boost open circuit voltages (Voc) to promising high values due to the elimination of deep defects. Since the low Voc values is identified of one of the main bottlenecks of kesterite technology, the improvements achieved are highly promising and give important insight for further possible optimizations.[spa] Los compuestos Cu2ZnSnSe4 (CZTSe), Cu2ZnSnS4 (CZTS) y Cu2ZnSnSexS4-x (CZTSSe) también conocidos como kesteritas debido a su estructura, presentan propiedades prometedoras para sustituir a la tecnología de células solares de capa fina basadas en Cu(In,Ga)Se2, evitando el problema potencial que podría generar el uso de indio y galio. A día de hoy, las eficiencias obtenidas en dispositivos de CIGS, son bastante mayores que las reportadas para dispositivos de kesteritas, debido entre otras razones a la diferencia en la madurez de dicha tecnología. Por lo tanto, es necesario un estudio más profundo de los materiales y dispositivos basados en kesteritas, enfocado a aumentar los valores de eficiencia de los dispositivos. El objetivo principal de esta Tesis Doctoral es el desarrollo y optimización de células solares con capas absorbentes basadas en el compuesto CZTSe por métodos de bajo coste incluyendo procesos de deposición física en fase vapor, así como también por procesos químicos. Se ha prestado especial interés en aumentar el conocimiento sobre la influencia de las propiedades de la superficie de la capa absorbente en el funcionamiento de las células solares. Estos estudios incluyen la optimización de la capa de kesterita, y también de su interfaz con la capa “buffer” o semiconductor tipo n en la heterounión. Se incluye un estudio detallado de la influencia de las propiedades químicas de la superficie del absorbente en la eficiencia de los dispositivos. Además, se presentan los estudios de optimización de la capa buffer basada en CdS y de capas buffer libres de Cd, usando como alternativa ZnS(O,OH), donde se obtuvieron eficiencias comparables con las de los dispositivos de referencia fabricados con CdS. Finalmente, se presenta un estudio de recristalización asistida por una capa nanométrica de Ge depositada en los precursores nano cristalinos. Se demuestra que este proceso induce un aumento significativo del crecimiento de los granos del absorbedor, reduciendo la presencia de defectos profundos eléctricamente activos que resultan perjudiciales para las propiedades de los dispositivos fotovoltaicos. Las mejoras presentadas en este estudio son altamente prometedoras y conducen hacia nuevas rutas de optimización en la fabricación de estos dispositivos

    Beurteilung von Nasennebenhöhlen-CT Scans bei Transplantatempfängern

    No full text
    corecore