182 research outputs found

    Co-expression of LKB1, MO25α and STRADα in bacteria yield the functional and active heterotrimeric complex

    Get PDF
    The tumour suppressor LKB1 plays a critical role in cell proliferation, polarity and energy metabolism. LKB1 is a Ser/Thr protein kinase that is associated with STRAD and MO25 invivo. Here, we describe the individual expression of the three components of the LKB1 complex using monocistronic vectors and their co-expression using tricistronic vectors that were constructed from monocistronic vectors using a fully modular cloning approach. The data show that among the three individually expressed components of the LKB1 complex, only MO25α can be expressed in soluble form, whereas the other two, LKB1 and STRADα are found almost exclusively in inclusion bodies. However, using the tricistronic vector system, functional LKB1-MO25α-STRADα complex was expressed and purified from soluble extracts by sequential immobilized-metal affinity and heparin chromatography, as shown by Western blotting using specific antibodies. In size exclusion chromatography, MO25α and STRADα exactly co-elute with LKB1 with an apparent molecular weight of the heterotrimeric complex of 160kDa. The specific activity in the peak fraction of the size exclusion chromatography was 250U/mg at approximately 25% purity. As shown by autoradiography, LKB1 and STRADα, both strongly autophosphorylate in vitro. Moreover, recombinant LKB1 complex activates AMPK by phosphorylation of the α-subunit at the Thr-172 site as shown (i) by Western blotting using phospho-specific antibodies after LKB1-dependent phosphorylation, (ii) by LKB1-dependent incorporation of radioactive phosphate into the α-subunit of kinase dead AMPK heterotrimer, and (iii) by activity determination of AMPK. Functional mammalian LKB1 complex is constitutively active, and when enriched from bacteria should prove to be a valuable tool for studying its molecular function and regulatio

    Comprehensive volumetric confocal microscopy with adaptive focusing

    Get PDF
    Comprehensive microscopy of distal esophagus could greatly improve the screening and surveillance of esophageal diseases such as Barrett’s esophagus by providing histomorphologic information over the entire region at risk. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that can be configured to image the entire distal esophagus by helically scanning the beam using optics within a balloon-centering probe. It is challenging to image the human esophagus in vivo with balloon-based SECM, however, because patient motion and anatomic tissue surface irregularities decenter the optics, making it difficult to keep the focus at a predetermined location within the tissue as the beam is scanned. In this paper, we present a SECM probe equipped with an adaptive focusing mechanism that can compensate for tissue surface irregularity and dynamic focal variation. A tilted arrangement of the objective lens is employed in the SECM probe to provide feedback signals to an adaptive focusing mechanism. The tilted configuration also allows the probe to obtain reflectance confocal data from multiple depth levels, enabling the acquisition of three-dimensional volumetric data during a single scan of the probe. A tissue phantom with a surface area of 12.6 cm2 was imaged using the new SECM probe, and 8 large-area reflectance confocal microscopy images were acquired over the depth range of 56 μm in 20 minutes. Large-area SECM images of excised swine small intestine tissue were also acquired, enabling the visualization of villous architecture, epithelium, and lamina propria. The adaptive focusing mechanism was demonstrated to enable acquisition of in-focus images even when the probe was not centered and the tissue surface was irregular

    Quantum gates using electronic and nuclear spins of Yb+^{+} in a magnetic field gradient

    Full text link
    An efficient scheme is proposed to carry out gate operations on an array of trapped Yb+^+ ions, based on a previous proposal using both electronic and nuclear degrees of freedom in a magnetic field gradient. For this purpose we consider the Paschen-Back regime (strong magnetic field) and employ a high-field approximation in this treatment. We show the possibility to suppress the unwanted coupling between the electron spins by appropriately swapping states between electronic and nuclear spins. The feasibility of generating the required high magnetic field is discussed

    AMP Is a True Physiological Regulator of AMP-Activated Protein Kinase by Both Allosteric Activation and Enhancing Net Phosphorylation

    Get PDF
    SummaryWhile allosteric activation of AMPK is triggered only by AMP, binding of both ADP and AMP has been reported to promote phosphorylation and inhibit dephosphorylation at Thr172. Because cellular concentrations of ADP and ATP are higher than AMP, it has been proposed that ADP is the physiological signal that promotes phosphorylation and that allosteric activation is not significant in vivo. However, we report that: AMP is 10-fold more potent than ADP in inhibiting Thr172 dephosphorylation; only AMP enhances LKB1-induced Thr172 phosphorylation; and AMP can cause >10-fold allosteric activation even at concentrations 1–2 orders of magnitude lower than ATP. We also provide evidence that allosteric activation by AMP can cause increased phosphorylation of acetyl-CoA carboxylase in intact cells under conditions in which there is no change in Thr172 phosphorylation. Thus, AMP is a true physiological regulator of AMPK, and allosteric regulation is an important component of the overall activation mechanism

    Nonperturbative theory of weak pre- and post-selected measurements

    Full text link
    This paper starts with a brief review of the topic of strong and weak pre- and post-selected (PPS) quantum measurements, as well as weak values, and afterwards presents original work. In particular, we develop a nonperturbative theory of weak PPS measurements of an arbitrary system with an arbitrary meter, for arbitrary initial states. New and simple analytical formulas are obtained for the average and the distribution of the meter pointer variable, which hold to all orders in the weak value. In the case of a mixed preselected state, in addition to the standard weak value, an associated weak value is required to describe weak PPS measurements. In the linear regime, the theory provides the generalized Aharonov-Albert-Vaidman formula. Moreover, we reveal two new regimes of weak PPS measurements: the strongly-nonlinear regime and the inverted region, where the system-dependent contribution to the pointer deflection decreases with increasing the measurement strength. The optimal conditions for weak PPS measurements are achieved in the strongly-nonlinear regime, where the magnitude of the average pointer deflection is equal or close to the maximum. This maximum is independent of the measurement strength, being typically of the order of the pointer uncertainty. We show that the amplification in the weak PPS measurements is a product of two qualitatively different quantities: proper amplification and enhancement. The effects of the free system and meter Hamiltonians are discussed. We also identify optimal meters for weak measurements. Exact solutions are obtained for a certain class of the measured observables. These solutions are used for numerical calculations, the results of which agree with the theory. Moreover, the theory is extended to allow for a completely general post-selection measurement. We also discuss time-symmetry properties of PPS measurements of any strength.Comment: The final version, corrected and expanded; 107 pages, 13 figure

    Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    Full text link

    Beitrag zur Frage der Osteochondritis dissecans

    No full text

    Dissecting the role of 5'-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase.

    No full text
    International audienceAMP-activated protein kinase (AMPK) is a heterotrimeric protein kinase that is crucial for cellular energy homeostasis of eukaryotic cells and organisms. Here we report on the activation of AMPK alpha1beta1gamma1 and alpha2beta2gamma1 by their upstream kinases (Ca(2+)/calmodulin-dependent protein kinase kinase-beta and LKB1-MO25alpha-STRADalpha), the deactivation by protein phosphatase 2Calpha, and on the extent of stimulation of AMPK by its allosteric activator AMP, using purified recombinant enzyme preparations. An accurate high pressure liquid chromatography-based method for AMPK activity measurements was established, which allowed for direct quantitation of the unphosphorylated and phosphorylated artificial peptide substrate, as well as the adenine nucleotides. Our results show a 1000-fold activation of AMPK by the combined effects of upstream kinase and saturating concentrations of AMP. The two AMPK isoforms exhibit similar specific activities (6 mumol/min/mg) and do not differ significantly by their responsiveness to AMP. Due to the inherent instability of ATP and ADP, it proved impossible to assay AMPK activity in the absolute absence of AMP. However, the half-maximal stimulatory effect of AMP is reached below 2 microm. AMP does not appear to augment phosphorylation by upstream kinases in the purified in vitro system, but deactivation by dephosphorylation of AMPK alpha-subunits at Thr-172 by protein phosphatase 2Calpha is attenuated by AMP. Furthermore, it is shown that neither purified NAD(+) nor NADH alters the activity of AMPK in a concentration range of 0-300 microm, respectively. Finally, evidence is provided that ZMP, a compound formed in 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside-treated cells to activate AMPK in vivo, allosterically activates purified AMPK in vitro, but compared with AMP, maximal activity is not reached. These data shed new light on physiologically important aspects of AMPK regulation
    corecore