31 research outputs found
4-Phenylbutyric acid treatment rescues trafficking and processing of a mutant surfactant protein C
Mutations in the SFTPC gene, encoding surfactant protein–C (SP-C), are associated with interstitial lung disease (ILD). Knowledge of the intracellular fate of mutant SP-C is essential in the design of therapies to correct trafficking/processing of the proprotein, and to prevent the formation of cytotoxic aggregates. We assessed the potential of a chemical chaperone to correct the trafficking and processing of three disease-associated mutant SP-C proteins. HEK293 cells were stably transfected with wild-type (SP-C(WT)) or mutant (SP-C(L188Q), SP-C(Δexon4), or SP-C(I73T)) SP-C, and cell lines with a similar expression of SP-C mRNA were identified. The effects of the chemical chaperone 4-phenylbutyric acid (PBA) and lysosomotropic drugs on intracellular trafficking to the endolysosomal pathway and the subsequent conversion of SP-C proprotein to mature peptide were assessed. Despite comparable SP-C mRNA expression, proprotein concentrations varied greatly: SP-C(I73T) was more abundant than SP-C(WT) and was localized to the cell surface, whereas SP-C(Δexon4) was barely detectable. In contrast, SP-C(L188Q) and SP-C(WT) proprotein concentrations were comparable, and a small amount of SP-C(L188Q) was localized to the endolysosomal pathway. PBA treatment restored the trafficking and processing of SP-C(L188Q) to SP-C(WT) concentrations, but did not correct the mistrafficking of SP-C(I73T) or rescue SP-C(Δexon4). PBA treatment also promoted the aggregation of SP-C proproteins, including SP-C(L188Q). This study provides proof of the principle that a chemical chaperone can correct the mistrafficking and processing of a disease-associated mutant SP-C proprotein
Prediction of peptide and protein propensity for amyloid formation
Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation
Curcumin Promotes A-beta Fibrillation and Reduces Neurotoxicity in Transgenic Drosophila
The pathology of Alzheimer's disease (AD) is characterized by the presence of extracellular deposits of misfolded and aggregated amyloid-β (Aβ) peptide and intraneuronal accumulation of tangles comprised of hyperphosphorylated Tau protein. For several years, the natural compound curcumin has been proposed to be a candidate for enhanced clearance of toxic Aβ amyloid. In this study we have studied the potency of feeding curcumin as a drug candidate to alleviate Aβ toxicity in transgenic Drosophila. The longevity as well as the locomotor activity of five different AD model genotypes, measured relative to a control line, showed up to 75% improved lifespan and activity for curcumin fed flies. In contrast to the majority of studies of curcumin effects on amyloid we did not observe any decrease in the amount of Aβ deposition following curcumin treatment. Conformation-dependent spectra from p-FTAA, a luminescent conjugated oligothiophene bound to Aβ deposits in different Drosophila genotypes over time, indicated accelerated pre-fibrillar to fibril conversion of Aβ1–42 in curcumin treated flies. This finding was supported by in vitro fibrillation assays of recombinant Aβ1–42. Our study shows that curcumin promotes amyloid fibril conversion by reducing the pre-fibrillar/oligomeric species of Aβ, resulting in a reduced neurotoxicity in Drosophila
The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation
<p>Abstract</p> <p>Background</p> <p>Surfactant protein C (SP-C) is important for the function of pulmonary surfactant. Heterozygous mutations in <it>SFTPC</it>, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD) in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects.</p> <p>Methods</p> <p>SP-C<sup>A116D </sup>was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide.</p> <p>Results</p> <p>Stable expression of SP-C<sup>A116D </sup>in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-C<sup>A116D </sup>expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC) and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-C<sup>A116D </sup>cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4<sup>+ </sup>lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-C<sup>A116D </sup>on neighboring cells in the alveolar space.</p> <p>Conclusions</p> <p>We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy. Our findings shed new light on the pathomechanisms underlying SP-C deficiency associated ILD and provide insight into the mechanisms by which drugs currently used in ILD therapy act.</p
Unfolding of the Amyloid β-Peptide Central Helix: Mechanistic Insights from Molecular Dynamics Simulations
Alzheimer's disease (AD) pathogenesis is associated with formation of amyloid fibrils caused by polymerization of the amyloid β-peptide (Aβ), which is a process that requires unfolding of the native helical structure of Aβ. According to recent experimental studies, stabilization of the Aβ central helix is effective in preventing Aβ polymerization into toxic assemblies. To uncover the fundamental mechanism of unfolding of the Aβ central helix, we performed molecular dynamics simulations for wild-type (WT), V18A/F19A/F20A mutant (MA), and V18L/F19L/F20L mutant (ML) models of the Aβ central helix. It was quantitatively demonstrated that the stability of the α-helical conformation of both MA and ML is higher than that of WT, indicating that the α-helical propensity of the three nonpolar residues (18, 19, and 20) is the main factor for the stability of the whole Aβ central helix and that their hydrophobicity plays a secondary role. WT was found to completely unfold by a three-step mechanism: 1) loss of α-helical backbone hydrogen bonds, 2) strong interactions between nonpolar sidechains, and 3) strong interactions between polar sidechains. WT did not completely unfold in cases when any of the three steps was omitted. MA and ML did not completely unfold mainly due to the lack of the first step. This suggests that disturbances in any of the three steps would be effective in inhibiting the unfolding of the Aβ central helix. Our findings would pave the way for design of new drugs to prevent or retard AD
α-Helix targeting reduces amyloid-β peptide toxicity
The amyloid-β peptide (Aβ) can generate cytotoxic oligomers, and their accumulation is thought to underlie the neuropathologic changes found in Alzheimer's disease. Known inhibitors of Aβ polymerization bind to undefined structures and can work as nonspecific aggregators, and inhibitors that target conformations that also occur in larger Aβ assemblies may even increase oligomer-derived toxicity. Here we report on an alternative approach whereby ligands are designed to bind and stabilize the 13–26 region of Aβ in an α-helical conformation, inspired by the postulated Aβ native structure. This is achieved with 2 different classes of compounds that also reduce Aβ toxicity to cells in culture and to hippocampal slice preparations, and that do not show any nonspecific aggregatory properties. In addition, when these inhibitors are administered to Drosophila melanogaster expressing human Aβ1–42 in the central nervous system, a prolonged lifespan, increased locomotor activity, and reduced neurodegeneration is observed. We conclude that stabilization of the central Aβ α-helix counteracts polymerization into toxic assemblies and provides a strategy for development of specific inhibitors of Aβ polymerization
Mediterranean versus Red sea corals facing climate change, a transcriptome analysis
The anthropogenic increase in atmospheric CO(2) that drives global warming and ocean acidification raises serious concerns regarding the future of corals, the main carbonate biomineralizers. Here we used transcriptome analysis to study the effect of long-term gradual temperature increase (annual rate), combined with lowered pH values, on a sub-tropical Red Sea coral, Stylophora pistillata, and on a temperate Mediterranean symbiotic coral Balanophyllia europaea. The gene expression profiles revealed a strong effect of both temperature increase and pH decrease implying for synergism response. The temperate coral, exposed to a twice as high range of seasonal temperature fluctuations than the Red Sea species, faced stress more effectively. The compensatory strategy for coping apparently involves deviating cellular resources into a massive up-regulation of genes in general, and specifically of genes involved in the generation of metabolic energy. Our results imply that sub-lethal, prolonged exposure to stress can stimulate evolutionary increase in stress resilience