328 research outputs found
Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms
Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events
that can be non-exponentially distributed. Within parametric ACTMCs, the
parameters of alarm-event distributions are not given explicitly and can be
subject of parameter synthesis. An algorithm solving the -optimal
parameter synthesis problem for parametric ACTMCs with long-run average
optimization objectives is presented. Our approach is based on reduction of the
problem to finding long-run average optimal strategies in semi-Markov decision
processes (semi-MDPs) and sufficient discretization of parameter (i.e., action)
space. Since the set of actions in the discretized semi-MDP can be very large,
a straightforward approach based on explicit action-space construction fails to
solve even simple instances of the problem. The presented algorithm uses an
enhanced policy iteration on symbolic representations of the action space. The
soundness of the algorithm is established for parametric ACTMCs with
alarm-event distributions satisfying four mild assumptions that are shown to
hold for uniform, Dirac and Weibull distributions in particular, but are
satisfied for many other distributions as well. An experimental implementation
shows that the symbolic technique substantially improves the efficiency of the
synthesis algorithm and allows to solve instances of realistic size.Comment: This article is a full version of a paper accepted to the Conference
on Quantitative Evaluation of SysTems (QEST) 201
Effects of columnar disorder on flux-lattice melting in high-temperature superconductors
The effect of columnar pins on the flux-lines melting transition in
high-temperature superconductors is studied using Path Integral Monte Carlo
simulations. We highlight the similarities and differences in the effects of
columnar disorder on the melting transition in YBaCuO
(YBCO) and the highly anisotropic BiSrCaCuO (BSCCO) at
magnetic fields such that the mean separation between flux-lines is smaller
than the penetration length. For pure systems, a first order transition from a
flux-line solid to a liquid phase is seen as the temperature is increased. When
adding columnar defects to the system, the transition temperature is not
affected in both materials as long as the strength of an individual columnar
defect (expressed as a flux-line defect interaction) is less than a certain
threshold for a given density of randomly distributed columnar pins. This
threshold strength is lower for YBCO than for BSCCO. For higher strengths the
transition line is shifted for both materials towards higher temperatures, and
the sharp jump in energy, characteristic of a first order transition, gives way
to a smoother and gradual rise of the energy, characteristic of a second order
transition. Also, when columnar defects are present, the vortex solid phase is
replaced by a pinned Bose glass phase and this is manifested by a marked
decrease in translational order and orientational order as measured by the
appropriate structure factors. For BSCCO, we report an unusual rise of the
translational order and the hexatic order just before the melting transition.
No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte
Study of two G-protein coupled receptor variants of human trace amine-associated receptor 5
Here we report the study of two bioengineered variants of human trace amine-associated receptor 5 (hTAAR5) that were expressed in stable tetracycline-inducible HEK293S cell lines. A systematic detergent screen showed that fos-choline-14 was the optimal detergent to solubilize and subsequently purify the receptors. Milligram quantities of both hTAAR5 variants were purified to near homogeneity using immunoaffinity chromatography followed by gel filtration. Circular dichroism showed that the purified receptors had helical secondary structures, indicating that they were properly folded. The purified receptors are not only suitable for functional analyses, but also for subsequent crystallization trials. To our knowledge, this is the first mammalian TAAR that has been heterologously expressed and purified. Our study will likely stimulate in the development of therapeutic drug targets for TAAR-associated diseases, as well as fabrication of TAAR-based sensing devices
Enhanced stability of the square lattice of a classical bilayer Wigner crystal
The stability and melting transition of a single layer and a bilayer crystal
consisting of charged particles interacting through a Coulomb or a screened
Coulomb potential is studied using the Monte-Carlo technique. A new melting
criterion is formulated which we show to be universal for bilayer as well as
for single layer crystals in the case of (screened) Coulomb, Lennard--Jones and
1/r^{12} repulsive inter-particle interactions. The melting temperature for the
five different lattice structures of the bilayer Wigner crystal is obtained,
and a phase diagram is constructed as a function of the interlayer distance. We
found the surprising result that the square lattice has a substantial larger
melting temperature as compared to the other lattice structures. This is a
consequence of the specific topology of the defects which are created with
increasing temperature and which have a larger energy as compared to the
defects in e.g. a hexagonal lattice.Comment: Accepted for publication in Physical Review
Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons
We present improved measurements of CP-violation parameters in the decays
, , and , and of
the branching fractions for and . The
results are obtained with the full data set collected at the
resonance by the BABAR experiment at the PEP-II asymmetric-energy factory
at the SLAC National Accelerator Laboratory, corresponding to
million pairs. We find the CP-violation parameter values and
branching fractions where in each case, the first uncertainties are statistical
and the second are systematic. We observe CP violation with a significance of
6.7 standard deviations for and 6.1 standard deviations for
, including systematic uncertainties. Constraints on the
Unitarity Triangle angle are determined from the isospin relations
among the rates and asymmetries. Considering only the solution
preferred by the Standard Model, we find to be in the range
at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.
Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-
In a sample of 471 million BB events collected with the BABAR detector at the
PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is
either e+e- or mu+mu-. We report results on partial branching fractions and
isospin asymmetries in seven bins of di-lepton mass-squared. We further present
CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi
resonance. We find no evidence for CP or lepton-flavor violation. The partial
branching fractions and isospin asymmetries are consistent with the Standard
Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.
Cross Sections for the Reactions e+e- --> K+ K- pi+pi-, K+ K- pi0pi0, and K+ K- K+ K- Measured Using Initial-State Radiation Events
We study the processes e+e- --> K+ K- pi+pi-gamma, K+ K- pi0pi0gamma, and K+
K- K+ K-gamma, where the photon is radiated from the initial state. About
84000, 8000, and 4200 fully reconstructed events, respectively, are selected
from 454 fb-1 of BaBar data. The invariant mass of the hadronic final state
defines the \epem center-of-mass energy, so that the K+ K- pi+pi- data can be
compared with direct measurements of the e+e- --> K+ K- pi+pi- reaction. No
direct measurements exist for the e+e- --> K+ K-pi0pi0 or e+e- --> K+ K-K+ K-
reactions, and we present an update of our previous result with doubled
statistics. Studying the structure of these events, we find contributions from
a number of intermediate states, and extract their cross sections. In
particular, we perform a more detailed study of the e+e- --> phi(1020)pipigamma
reaction, and confirm the presence of the Y(2175) resonance in the phi(1020)
f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/psi
in all three final states and in several intermediate states, as well as the
psi(2S) in some modes, and measure the corresponding product of branching
fraction and electron width.Comment: 35 pages, 42 figure
Recommended from our members
Measurement of B(B-->X_s {\gamma}), the B-->X_s {\gamma} photon energy spectrum, and the direct CP asymmetry in B-->X_{s+d} {\gamma} decays
The photon spectrum in B --> X_s {\gamma} decay, where X_s is any strange
hadronic state, is studied using a data sample of (382.8\pm 4.2) \times 10^6
e^+ e^- --> \Upsilon(4S) --> BBbar events collected by the BABAR experiment at
the PEP-II collider. The spectrum is used to measure the branching fraction B(B
--> X_s \gamma) = (3.21 \pm 0.15 \pm 0.29 \pm 0.08)\times 10^{-4} and the
first, second, and third moments = 2.267 \pm 0.019 \pm 0.032 \pm
0.003 GeV,, )^2> = 0.0484 \pm 0.0053 \pm 0.0077 \pm
0.0005 GeV^2, and )^3> = -0.0048 \pm 0.0011 \pm 0.0011
\pm 0.0004 GeV^3, for the range E_\gamma > 1.8 GeV, where E_{\gamma} is the
photon energy in the B-meson rest frame. Results are also presented for
narrower E_{\gamma} ranges. In addition, the direct CP asymmetry A_{CP}(B -->
X_{s+d} \gamma) is measured to be 0.057 \pm 0.063. The spectrum itself is also
unfolded to the B-meson rest frame; that is the frame in which theoretical
predictions for its shape are made.Comment: 37 pages, 19 postscript figures, submitted to Phys. Rev. D. No
analysis or results have changed from previous version. Some changes to
improve clarity based on interactions with Phys. Rev. D referees, including
one new Figure (Fig. 13), and some minor wording/punctuation/spelling
mistakes fixe
Study of Upsilon(3S,2S) -> eta Upsilon(1S) and Upsilon(3S,2S) -> pi+pi- Upsilon(1S) hadronic trasitions
We study the Upsilon(3S,2S)->eta Upsilon(1S) and Upsilon(3S,2S)->pi+pi-
Upsilon(1S) transitions with 122 million Upsilon(3S) and 100 million
Upsilon(2S) mesons collected by the BaBar detector at the PEP-II asymmetric
energy e+e- collider. We measure B[Upsilon(2S)->eta
Upsilon(1S)]=(2.39+/-0.31(stat.)+/-0.14(syst.))10^-4 and Gamma[Upsilon(2S)->eta
Upsilon(1S)]/Gamma[Upsilon(2S)-> pi+pi-
Upsilon(1S)]=(1.35+/-0.17(stat.)+/-0.08(syst.))10^-3. We find no evidence for
Upsilon(3S)->eta Upsilon(1S) and obtain B[Upsilon(3S)->eta Upsilon(1S)]<1.0
10^-4 and Gamma[Upsilon(3S)->eta Upsilon(1S)]/Gamma[Upsilon(3S)->pi+pi-
Upsilon(1S)]<2.3 10^-3 as upper limits at the 90% confidence level. We also
provide improved measurements of the Upsilon(2S) - Upsilon(1S) and Upsilon(3S)
- Upsilon(1S) mass differences, 562.170+/-0.007(stat.)+/-0.088(syst.) MeV/c^2
and 893.813+/-0.015(stat.)+/-0.107(syst.) MeV/c^2 respectively.Comment: 8 pages, 16 encapsulated postscript figures, submitted to Phys.Rev.
- âŠ