424 research outputs found

    Haplotypes at the Tas2r locus on distal chromosome 6 vary with quinine taste sensitivity in inbred mice

    Get PDF
    BACKGROUND: The detection of bitter-tasting compounds by the gustatory system is thought to alert animals to the presence of potentially toxic food. Some, if not all, bitter stimuli activate specific taste receptors, the T2Rs, which are expressed in subsets of taste receptor cells on the tongue and palate. However, there is evidence for both receptor-dependent and -independent transduction mechanisms for a number of bitter stimuli, including quinine hydrochloride (QHCl) and denatonium benzoate (DB). RESULTS: We used brief-access behavioral taste testing of BXD/Ty recombinant inbred (RI) mouse strains to map the major quantitative trait locus (QTL) for taste sensitivity to QHCl. This QTL is restricted to a ~5 Mb interval on chromosome 6 that includes 24 genes encoding T2Rs (Tas2rs). Tas2rs at this locus display in total 307 coding region single nucleotide polymorphisms (SNPs) between the two BXD/Ty RI parental strains, C57BL/6J (quinine-sensitive) and DBA/2J (quinine insensitive); approximately 50% of these mutations are silent. Individual RI lines contain exclusively either C57BL/6J or DBA/2J Tas2r alleles at this locus, and RI lines containing C57BL/6J Tas2r alleles are more sensitive to QHCl than are lines containing DBA/2J alleles. Thus, the entire Tas2r cluster comprises a large haplotype that correlates with quinine taster status. CONCLUSION: These studies, the first using a taste-salient assay to map the major QTL for quinine taste, indicate that a T2R-dependent transduction cascade is responsible for the majority of strain variance in quinine taste sensitivity. Furthermore, the large number of polymorphisms within coding exons of the Tas2r cluster, coupled with evidence that inbred strains exhibit largely similar bitter taste phenotypes, suggest that T2R receptors are quite tolerant to variation

    Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli

    Get PDF
    BACKGROUND: Common inbred mouse strains are genotypically diverse, but it is still poorly understood how this diversity relates to specific differences in behavior. To identify quantitative trait genes that influence taste behavior differences, it is critical to utilize assays that exclusively measure the contribution of orosensory cues. With a few exceptions, previous characterizations of behavioral taste sensitivity in inbred mouse strains have generally measured consumption, which can be confounded by post-ingestive effects. Here, we used a taste-salient brief-access procedure to measure taste sensitivity to eight stimuli characterized as bitter or aversive in C57BL/6J (B6) and DBA/2J (D2) mice. RESULTS: B6 mice were more sensitive than D2 mice to a subset of bitter stimuli, including quinine hydrochloride (QHCl), 6-n-propylthiouracil (PROP), and MgCl(2). D2 mice were more sensitive than B6 mice to the bitter stimulus raffinose undecaacetate (RUA). These strains did not differ in sensitivity to cycloheximide (CYX), denatonium benzoate (DB), KCl or HCl. CONCLUSION: B6-D2 taste sensitivity differences indicate that differences in consumption of QHCl, PROP, MgCl(2 )and RUA are based on immediate orosensory cues, not post-ingestive effects. The absence of a strain difference for CYX suggests that polymorphisms in a T2R-type taste receptor shown to be differentially sensitive to CYX in vitro are unlikely to differentially contribute to the CYX behavioral response in vivo. The results of these studies point to the utility of these common mouse strains and their associated resources for investigation into the genetic mechanisms of taste

    Defect-unbinding transitions and inherent structures in two dimensions

    Full text link
    We present a large-scale (36000-particle) computational study of the "inherent structures" (IS) associated with equilibrium, two-dimensional, one-component Lennard-Jones systems. Our results provide strong support both for the inherent-structures theory of classical fluids, and for the KTHNY theory of two-stage melting in two dimensions. This support comes from the observation of three qualitatively distinct "phases" of inherent structures: a crystal, a "hexatic glass", and a "liquid glass". We also directly observe, in the IS, analogs of the two defect-unbinding transitions (respectively, of dislocations, and disclinations) believed to mediate the two equilibrium phase transitions. Each transition shows up in the inherent structures---although the free disclinations in the "liquid glass" are embedded in a percolating network of grain boundaries. The bond-orientational correlation functions of the inherent structures show the same progressive loss of order as do the three equilibrium phases: long-range to quasi-long-range to short-range.Comment: RevTeX, 8 pages, 15 figure

    Experimental Tools to Study Molecular Recognition within the Nanoparticle Corona

    Get PDF
    Advancements in optical nanosensor development have enabled the design of sensors using synthetic molecular recognition elements through a recently developed method called Corona Phase Molecular Recognition (CoPhMoRe). The synthetic sensors resulting from these design principles are highly selective for specific analytes, and demonstrate remarkable stability for use under a variety of conditions. An essential element of nanosensor development hinges on the ability to understand the interface between nanoparticles and the associated corona phase surrounding the nanosensor, an environment outside of the range of traditional characterization tools, such as NMR. This review discusses the need for new strategies and instrumentation to study the nanoparticle corona, operating in both in vitro and in vivo environments. Approaches to instrumentation must have the capacity to concurrently monitor nanosensor operation and the molecular changes in the corona phase. A detailed overview of new tools for the understanding of CoPhMoRe mechanisms is provided for future applications.Juvenile Diabetes Research Foundation InternationalMcGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramNational Science Foundation (U.S.) (Postdoctoral Research Fellowship Award DBI-1306229)Burroughs Wellcome Fund (Grant Award 1013994)German Science Foundatio

    Protein-targeted corona phase molecular recognition

    Get PDF
    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications.Juvenile Diabetes Research Foundation InternationalMIT-Technion Fellowshi

    HST STIS spectroscopy of the triple nucleus of M31: two nested disks in Keplerian rotation around a Supermassive Black Hole

    Get PDF
    We present HST spectroscopy of the nucleus of M31 obtained with STIS. Spectra taken around the CaT lines at 8500 see only the red giants in the double bright- ness peaks P1 and P2. In contrast, spectra taken at 3600-5100 A are sensitive to the tiny blue nucleus embedded in P2, the lower surface brightness red nucleus. P2 has a K-type spectrum, but the embedded blue nucleus has an A-type spectrum with strong Balmer absorption lines. Given the small likelihood for stellar collisions, a 200 Myr old starburst appears to be the most plausible origin of the blue nucleus. In stellar population, size, and velocity dispersion, the blue nucleus is so different from P1 and P2 that we call it P3. The line-of-sight velocity distributions of the red stars in P1+P2 strengthen the support for Tremaine s eccentric disk model. The kinematics of P3 is consistent with a circular stellar disk in Keplerian rotation around a super-massive black hole with M_bh = 1.4 x 10^8 M_sun. The P3 and the P1+P2 disks rotate in the same sense and are almost coplanar. The observed velocity dispersion of P3 is due to blurred rotation and has a maximum value of sigma = 1183+-201 km/s. The observed peak rotation velocity of P3 is V = 618+-81 km/s at radius 0.05" = 0.19 pc corresponding to a circular rotation velocity at this radius of ~1700 km/s. Any dark star cluster alternative to a black hole must have a half-mass radius <= 0.03" = 0.11 pc. We show that this excludes clusters of brown dwarfs or dead stars on astrophysical grounds.Comment: Astrophysical Journal, Sep 20, 2005, 21 pages including 20 figure

    Uranium nitride-silicide advanced nuclear fuel: Higher efficiency and greater safety

    Get PDF
    The development of new nuclear fuel compositions is being driven by an interest in improving efficiency/lowering cost and increasing safety margins. Nuclear fuel efficiency is in large measure a function of the atomic density of the uranium, that is, the more fissionable uranium available per unit volume the less fuel volume that is required. Proliferation concerns limit the concentration of fissile 235U, and thus attention is directed to higher overall uranium content fuel. Among the options are the high temperature phases U3Si2 and composite UN- U3Si2 where the design would have the more water-stable U3Si2 surround the more soluble, but higher uranium density UN grains. (Uranium metal of course has the highest atomic density, however its low melting point, high degree of swelling under irradiation, and chemical reactivity eliminate it from consideration.) Another advantage of the nitride and silicide phases are their high thermal conductivity, greatly exceeding the current standard UO2 fuel, with the high conductivity potentially allowing the fuel to operate at a higher power density. Please click Additional Files below to see the full abstract

    Mechanism of differential Zika and dengue virus neutralization by a public antibody lineage targeting the DIII lateral ridge

    Get PDF
    We previously generated a panel of human monoclonal antibodies (mAbs) against Zika virus (ZIKV) and identified one, ZIKV-116, that shares germline usage with mAbs identified in multiple donors. Here we show that ZIKV-116 interferes with ZIKV infection at a post-cellular attachment step by blocking viral fusion with host membranes. ZIKV-116 recognizes the lateral ridge of envelope protein domain III, with one critical residue varying between the Asian and African strains responsible for differential binding affinity and neutralization potency (E393D). ZIKV-116 also binds to and cross-neutralizes some dengue virus serotype 1 (DENV1) strains, with genotype-dependent inhibition explained by variation in a domain II residue (R204K) that potentially modulates exposure of the distally located, partially cryptic epitope. The V-J reverted germline configuration of ZIKV-116 preferentially binds to and neutralizes an Asian ZIKV strain, suggesting that this epitope may optimally induce related B cell clonotypes. Overall, these studies provide a structural and molecular mechanism for a cross-reactive mAb that uniquely neutralizes ZIKV and DENV1

    PatientExploreR: an extensible application for dynamic visualization of patient clinical history from electronic health records in the OMOP common data model.

    Get PDF
    MotivationElectronic health records (EHRs) are quickly becoming omnipresent in healthcare, but interoperability issues and technical demands limit their use for biomedical and clinical research. Interactive and flexible software that interfaces directly with EHR data structured around a common data model (CDM) could accelerate more EHR-based research by making the data more accessible to researchers who lack computational expertise and/or domain knowledge.ResultsWe present PatientExploreR, an extensible application built on the R/Shiny framework that interfaces with a relational database of EHR data in the Observational Medical Outcomes Partnership CDM format. PatientExploreR produces patient-level interactive and dynamic reports and facilitates visualization of clinical data without any programming required. It allows researchers to easily construct and export patient cohorts from the EHR for analysis with other software. This application could enable easier exploration of patient-level data for physicians and researchers. PatientExploreR can incorporate EHR data from any institution that employs the CDM for users with approved access. The software code is free and open source under the MIT license, enabling institutions to install and users to expand and modify the application for their own purposes.Availability and implementationPatientExploreR can be freely obtained from GitHub: https://github.com/BenGlicksberg/PatientExploreR. We provide instructions for how researchers with approved access to their institutional EHR can use this package. We also release an open sandbox server of synthesized patient data for users without EHR access to explore: http://patientexplorer.ucsf.edu.Supplementary informationSupplementary data are available at Bioinformatics online
    corecore