172 research outputs found

    Radio supernovae, supernova remnants and HII regions in NGC 2146 observed with MERLIN and the VLA

    Get PDF
    We present a high-resolution 5-GHz radio continuum map of the starburst galaxy NGC 2146 made with MERLIN and the VLA, in a search of radio supernovae and supernova remnants expected to be already produced by the most massive stars in the starburst. At 5 GHz, about 20 point sources were detected earlier by Glendenning & Kronberg (1986) in the central 800 pc of NGC 2146. Our observations with higher sensitivity and resolution made with MERLIN and the VLA confirms the detection of 18 sources, and resolves 7 of them. Additional 1.6-GHz MERLIN observations disclose 9 sources coincident in position with those detected at 5 GHz, which allows us to derive their spectral indices. Only 3 sources have indices consistent with synchrotron emission from supernova remnants or radio supernovae, while the others have very steep inverted spectra. We suggest that the sources with positive spectral index are optically thick ultra-compact and/or ultra-dense HII regions with high electron densities and high emission measures (EM > 10^(7) cm^(-6) pc). Minimum energy requirements indicate that these regions may contain up to 1000 equivalent stars of type O6. When compared with M 82, the galaxy NGC 2146 lacks however a large number of supernova remnants. We suggest that NGC 2146 is experiencing a burst of star formation stronger than that in M 82, but being in a younger phase. We may, however, not exclude an alternative scenario in which strong free-free absorption at 1.6 GHz in foreground ionized gas with very high emission measures (EM > 10^(8) cm^(-6) pc) hides a certain number of supernova remnants, thus rendering for some sources the observed inverted spectra.Comment: 10 pages, including 2 figures. Accepted for publication in Astronomy and Astrophysic

    The influence of the cluster environment on the large-scale radio continuum emission of 8 Virgo cluster spirals

    Get PDF
    The influence of the environment on the polarized and total power radio continuum emission of cluster spiral galaxies is investigated. We present deep scaled array VLA 20 and 6 cm observations including polarization of 8 Virgo spiral galaxies. These data are combined with existing optical, HI, and Halpha data. Ram pressure compression leads to sharp edges of the total power distribution at one side of the galactic disk. These edges coincide with HI edges. In edge-on galaxies the extraplanar radio emission can extend further than the HI emission. In the same galaxies asymmetric gradients in the degree of polarization give additional information on the ram pressure wind direction. The local total power emission is not sensitive to the effects of ram pressure. The radio continuum spectrum might flatten in the compressed region only for very strong ram pressure. This implies that neither the local star formation rate nor the turbulent small-scale magnetic field are significantly affected by ram pressure. Ram pressure compression occurs mainly on large scales (>=1 kpc) and is primarily detectable in polarized radio continuum emission.Comment: 16 pages, 10 figures, accepted for publication in A&

    Detection and localization of multiple rate changes in Poisson spike trains

    Get PDF
    Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. In statistical spike train analysis, stochastic point process models usually assume stationarity, in particular that the underlying spike train shows a constant firing rate (e.g. [1]). However, such models can lead to misinterpretation of the associated tests if the assumption of rate stationarity is not met (e.g. [2]). Therefore, the analysis of nonstationary data requires that rate changes can be located as precisely as possible. However, present statistical methods focus on rejecting the null hypothesis of stationarity without explicitly locating the change point(s) (e.g. [3]). We propose a test for stationarity of a given spike train that can also be used to estimate the change points in the firing rate. Assuming a Poisson process with piecewise constant firing rate, we propose a Step-Filter-Test (SFT) which can work simultaneously in different time scales, accounting for the high variety of firing patterns in experimental spike trains. Formally, we compare the numbers N1=N1(t,h) and N2=N2(t,h) of spikes in the time intervals (t-h,t] and (h,t+h]. By varying t within a fine time lattice and simultaneously varying the interval length h, we obtain a multivariate statistic D(h,t):=(N1-N2)/V(N1+N2), for which we prove asymptotic multivariate normality under homogeneity. From this a practical, graphical device to spot changes of the firing rate is constructed. Our graphical representation of D(h,t) (Figure 1A) visualizes the changes in the firing rate. For the statistical test, a threshold K is chosen such that under homogeneity, |D(h,t)|<K holds for all investigated h and t with probability 0.95. This threshold can indicate potential change points in order to estimate the inhomogeneous rate profile (Figure 1B). The SFT is applied to a sample data set of spontaneous single unit activity recorded from the substantia nigra of anesthetized mice. In this data set, multiple rate changes are identified which agree closely with visual inspection. In contrast to approaches choosing one fixed kernel width [4], our method has advantages in the flexibility of h

    Molecular Gas in M82: Resolving the Outflow and Streamers

    Get PDF
    We present a high-resolution (3.6'', 70pc) CO(1-0) mosaic of the molecular gas in M 82 covering an area of 2.5' x 3.5' (2.8kpc x 3.9kpc) obtained with the OVRO millimeter interferometer. The observations reveal the presence of huge amounts of molecular gas (> 70% of the total molecular mass, M_tot=1.3 x 10^9 M_sun) outside the central 1 kpc disk. Molecular streamers are detected in and below M82's disk out to distances from the center of 1.7 kpc. Some of these streamers are well correlated with optical absorption features; they form the basis of some of the prominent tidal HI features around M 82. This provides evidence that the molecular gas within M 82's optical disk is disrupted by the interaction with M 81. Molecular gas is found in M 82's outflow/halo, reaching distances up to 1.2 kpc below the plane; CO line-splitting has been detected for the first time in the outflow. The maximum outflow velocity is 230 km/s; we derive an opening angle of 55 deg for the molecular outflow cone. The total amount of gas in the outflow is >3 x 10^8 M_sun and its kinetic energy is of order 10^55 erg, about one percent of the estimated total mechanical energy input of M 82's starburst. Our study implies that extreme starburst environments can move significant amounts of molecular gas in to a galaxy's halo (and even to the intergalactic medium).Comment: accepted for publication in the ApJ Letters full PS file @ http://www.aoc.nrao.edu/~fwalter/walter_m82.p

    Formation of a Massive Black Hole at the Center of the Superbubble in M82

    Get PDF
    We performed 12CO(1-0), 13CO(1-0), and HCN(1-0) interferometric observations of the central region (about 450 pc in radius) of M82 with the Nobeyama Millimeter Array, and have successfully imaged a molecular superbubble and spurs. The center of the superbubble is clearly shifted from the nucleus by 140 pc. This position is close to that of the massive black hole (BH) of >460 Mo and the 2.2 micron secondary peak (a luminous supergiant dominated cluster), which strongly suggests that these objects may be related to the formation of the superbubble. Consideration of star formation in the cluster based on the infrared data indicates that (1) energy release from supernovae can account for the kinetic energy of the superbubble, (2) the total mass of stellar-mass BHs available for building-up the massive BH may be much higher than 460 Mo, and (3) it is possible to form the middle-mass BH of 100-1000 Mo within the timescale of the superbubble. We suggest that the massive BH was produced and is growing in the intense starburst region.Comment: 9 pages, 3 figures, to appear in ApJ Lette

    Mesoscale modelling of the CO2 interactions between the surface and the atmosphere applied to the April 2007 CERES field experiment

    Get PDF
    This paper describes a numerical interpretation of the April 2007, CarboEurope Regional Experiment Strategy (CERES) campaign, devoted to the study of the CO2 cycle at the regional scale. Four consecutive clear sky days with intensive observations of CO2 concentration, fluxes at the surface and in the boundary layer have been simulated with the Meso-NH mesoscale model, coupled to ISBA-A-gs land surface model. The main result of this paper is to show how aircraft observations of CO2 concentration have been used to identify surface model errors and to calibrate the CO2 driving component of the surface model. In fact, the comparisons between modelled and observed CO2 concentrations within the Atmospheric Boundary Layer (ABL) allow to calibrate and correct not only the parameterization of respired CO2 fluxes by the ecosystem but also the Leaf Area Index (LAI) of the dominating land cover. After this calibration, the paper describes systematic comparisons of the model outputs with numerous data collected during the CERES campaign, in April 2007. For instance, the originality of this paper is the spatial integration of the comparisons. In fact, the aircraft observations of CO2 concentration and fluxes and energy fluxes are used for the model validation from the local to the regional scale. As a conclusion, the CO2 budgeting approach from the mesoscale model shows that the winter croplands are assimilating more CO2 than the pine forest, at this stage of the year and this case study

    SiO chimneys and supershells in M82

    Get PDF
    In this Letter we present the first images of the emission of SiO and H13CO+ in the nucleus of the starburst galaxy M82. Contrary to other molecular species that mainly trace the distribution of the star-forming molecular gas within the disk, the SiO emission extends noticeably out of the galaxy plane. The bulk of the SiO emission is restricted to two major features. The first feature, referred to as the SiO supershell, is an open shell of 150 pc diameter, located 120 pc west from the galaxy center. The SiO supershell represents the inner front of a molecular shell expanding at 40 km/s, produced by mass ejection around a supercluster of young stars containing supernova remnant SNR 41.95+57.5. The second feature is a vertical filament, referred to as the SiO chimney, emanating from the disk at 200 pc east from the galaxy center. The SiO chimney reaches a 500 pc vertical height, and it is associated with the most prominent chimney identified in radio continuum maps. The kinematics, morphology, and fractional abundances of the SiO gas features in M82 can be explained in the framework of shocked chemistry driven by local episodes of gas ejection from the starburst disk.Comment: 10 pages, 2 figures, published in ApJLetters, 200

    Ground-based and airborne in-situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010

    Get PDF
    The volcanic aerosol plume resulting from the Eyjafjallajökull eruption in Iceland in April and May 2010 was detected in clear layers above Switzerland during two periods (17–19 April 2010 and 16–19 May 2010). In-situ measurements of the airborne volcanic plume were performed both within ground-based monitoring networks and with a research aircraft up to an altitude of 6000 m a.s.l. The wide range of aerosol and gas phase parameters studied at the high altitude research station Jungfraujoch (3580 m a.s.l.) allowed for an in-depth characterization of the detected volcanic aerosol. Both the data from the Jungfraujoch and the aircraft vertical profiles showed a consistent volcanic ash mode in the aerosol volume size distribution with a mean optical diameter around 3 ± 0.3 &amp;mu;m. These particles were found to have an average chemical composition very similar to the trachyandesite-like composition of rock samples collected near the volcano. Furthermore, chemical processing of volcanic sulfur dioxide into sulfate clearly contributed to the accumulation mode of the aerosol at the Jungfraujoch. The combination of these in-situ data and plume dispersion modeling results showed that a significant portion of the first volcanic aerosol plume reaching Switzerland on 17 April 2010 did not reach the Jungfraujoch directly, but was first dispersed and diluted in the planetary boundary layer. The maximum PM&lt;sub&gt;10&lt;/sub&gt; mass concentrations at the Jungfraujoch reached 30 &amp;mu;gm&lt;sup&gt;&amp;minus;3&lt;/sup&gt; and 70 &amp;mu;gm&lt;sup&gt;&amp;minus;3&lt;/sup&gt; (for 10-min mean values) duri ng the April and May episode, respectively. Even low-altitude monitoring stations registered up to 45 &amp;mu;gm&lt;sup&gt;&amp;minus;3&lt;/sup&gt; of volcanic ash related PM&lt;sub&gt;10&lt;/sub&gt; (Basel, Northwestern Switzerland, 18/19 April 2010). The flights with the research aircraft on 17 April 2010 showed one order of magnitude higher number concentrations over the northern Swiss plateau compared to the Jungfraujoch, and a mass concentration of 320 (200–520) &amp;mu;gm&lt;sup&gt;&amp;minus;3&lt;/sup&gt; on 18 May 2010 over the northwestern Swiss plateau. The presented data significantly contributed to the time-critical assessment of the local ash layer properties during the initial eruption phase. Furthermore, dispersion models benefited from the detailed information on the volcanic aerosol size distribution and its chemical composition
    • …
    corecore