1,941 research outputs found
Recreation and Wildlife Activity in the Wood River Valley
As the human population grows, people increasingly seek to recreate on public lands. Consequently, humans and animals find themselves sharing space. It is important, therefore, to understand how humans and wildlife interact in these natural spaces. The Big Wood River Watershed in Blaine County, Idaho is an excellent example of a natural area with a high density of recreational activity. This study aims to determine whether frequency and/or intensity of recreational activity affects wildlife activity. Data was collected using a combination of camera trapping and use of autonomous recording units. We expected that areas with high levels of recreational activity and high average sound would correlate with low wildlife activity and also that wildlife would change their activity patterns to avoid interaction with recreationists. Early analysis, however, indicates that the relationship between recreation and wildlife activity is more nuanced. These results will provide insight into public land management and how to best balance recreationist demands for access to lands with needs of wildlife
The Swift X-ray flaring afterglow of GRB 050607
The unique capability of the Swift satellite to perform a prompt and
autonomous slew to a newly detected Gamma-Ray Burst (GRB) has yielded the
discovery of interesting new properties of GRB X-ray afterglows, such as the
steep early lightcurve decay and the frequent presence of flares detected up to
a few hours after the GRB trigger. We present observations of GRB 050607, the
fourth case of a GRB discovered by Swift with flares superimposed on the
overall fading X-ray afterglow. The flares of GRB 050607 were not symmetric as
in previously reported cases, showing a very steep rise and a shallower decay,
similar to the Fast Rise, Exponential Decay that are frequently observed in the
gamma-ray prompt emission. The brighter flare had a flux increase by a factor
of approximately 25,peaking for 30 seconds at a count rate of approximately 30
counts s-1, and it presented hints of addition short time scale activity during
the decay phase. There is evidence of spectral evolution during the flares. In
particular, at the onset of the flares the observed emission was harder, with a
gradual softening as each flare decayed. The very short time scale and the
spectral variability during the flaring activity are indicators of possible
extended periods of energy emission by the GRB central engine. The flares were
followed by a phase of shallow decay, during which the forward shock was being
refreshed by a long-lived central engine or by shells of lower Lorentz factors,
and by a steepening after approximately 12 ks to a decay slope considered
typical of X-ray afterglows.Comment: 23 pages, 5 figures, Accepted by the Astrophysical Journa
Swift XRT Observations of the Afterglow of XRF 050416A
Swift discovered XRF 050416A with the BAT and began observing it with its
narrow field instruments only 64.5 s after the burst onset. Its very soft
spectrum classifies this event as an X-ray flash. The afterglow X-ray emission
was monitored up to 74 days after the burst. The X-ray light curve initially
decays very fast, subsequently flattens and eventually steepens again, similar
to many X-ray afterglows. The first and second phases end about 172 and 1450 s
after the burst onset, respectively. We find evidence of spectral evolution
from a softer emission with photon index Gamma ~ 3.0 during the initial steep
decay, to a harder emission with Gamma ~ 2.0 during the following evolutionary
phases. The spectra show intrinsic absorption in the host galaxy. The
consistency of the initial photon index with the high energy BAT photon index
suggests that the initial phase of the X-ray light curve may be the low-energy
tail of the prompt emission. The lack of jet break signatures in the X-ray
afterglow light curve is not consistent with empirical relations between the
source rest-frame peak energy and the collimation-corrected energy of the
burst. The standard uniform jet model can give a possible description of the
XRF 050416A X-ray afterglow for an opening angle larger than a few tens of
degrees, although numerical simulations show that the late time decay is
slightly flatter than expected from on-axis viewing of a uniform jet. A
structured Gaussian-type jet model with uniform Lorentz factor distribution and
viewing angle outside the Gaussian core is another possibility, although a full
agreement with data is not achieved with the numerical models explored.Comment: Accepted for publication on ApJ; replaced with revised version: part
of the discussion moved in an appendix; 11 pages, 6 figures; abstract
shortened for posting on astro-p
Growing up in Bradford:Protocol for the age 7-11 follow up of the Born in Bradford birth cohort
Background: Born in Bradford (BiB) is a prospective multi-ethnic pregnancy and birth cohort study that was established to examine determinants of health and development during childhood and, subsequently, adult life in a deprived multi-ethnic population in the north of England. Between 2007 and 2010, the BiB cohort recruited 12,453 women who experienced 13,776 pregnancies and 13,858 births, along with 3353 of their partners. Forty five percent of the cohort are of Pakistani origin. Now that children are at primary school, the first full follow-up of the cohort is taking place. The aims of the follow-up are to investigate the determinants of children's pre-pubertal health and development, including through understanding parents' health and wellbeing, and to obtain data on exposures in childhood that might influence future health. Methods: We are employing a multi-method approach across three data collection arms (community-based family visits, school based physical assessment, and whole classroom cognitive, motor function and wellbeing measures) to follow-up over 9000 BiB children aged 7-11 years and their families between 2017 and 2021. We are collecting detailed parent and child questionnaires, cognitive and sensorimotor assessments, blood pressure, anthropometry and blood samples from parents and children. Dual x-ray absorptiometry body scans, accelerometry and urine samples are collected on subsamples. Informed consent is collected for continued routine data linkage to health, social care and education records. A range of engagement activities are being used to raise the profile of BiB and to disseminate findings. Discussion: Our multi-method approach to recruitment and assessment provides an efficient method of collecting rich data on all family members. Data collected will enhance BiB as a resource for the international research community to study the interplay between ethnicity, socioeconomic circumstances and biology in relation to cardiometabolic health, mental health, education, cognitive and sensorimotor development and wellbeing.</p
Augmenting forearm crutches with wireless sensors for lower limb rehabilitation
Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage
Mucus and mucus flake composition and abundance reflect inflammatory and infection status in cystic fibrosis
BACKGROUND: Mucus hyperconcentration in cystic fibrosis (CF) lung disease is marked by increases in both mucin and DNA concentration. Additionally, it has been shown that half of the mucins present in bronchial alveolar lavage fluid (BALF) from preschool-aged CF patients are present in as non-swellable mucus flakes. This motivates us to examine the utility of mucus flakes, as well as mucin and DNA concentrations in BALF as markers of infection and inflammation in CF airway disease. METHODS: In this study, we examined the mucin and DNA concentration, as well as mucus flake abundance, composition, and biophysical properties in BALF from three groups; healthy adult controls, and two CF cohorts, one preschool aged and the other school aged. BALFs were characterized via refractometry, PicoGreen, immunofluorescence microscopy, particle tracking microrheology, and fluorescence image tiling. RESULTS: Mucin and DNA BALF concentrations increased progressively from healthy young adult controls to preschool-aged people and school-aged people with CF. Notably, mucin concentrations were increased in bronchoalveolar lavage fluid (BALF) from preschool-aged patients with CF prior to decreased pulmonary function. Infrequent small mucus flakes were identified in normal subjects. A progressive increase in the abundance of mucus flakes in preschool and school-aged CF patients was observed. Compositionally, MUC5B dominated flakes from normal subjects, whereas an increase in MUC5AC was observed in people with CF, reflected in a reduced flaked MUC5B/MUC5AC mucin ratio. CONCLUSION: These findings suggest mucus composition and flake properties are useful markers of inflammatory and infection-based changes in CF airways
Neonatal head and torso vibration exposure during inter-hospital transfer
Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is ~9Hz. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes
Identification of Novel Antimalarial Chemotypes via Chemoinformatic Compound Selection Methods for a High-Throughput Screening Program against the Novel Malarial Target, PfNDH2: Increasing Hit Rate via Virtual Screening Methods
Malaria is responsible for approximately 1 million deaths annually; thus, continued efforts to discover new antimalarials are required. A HTS screen was established to identify novel inhibitors of the parasite's mitochondrial enzyme NADH:quinone oxidoreductase (PfNDH2). On the basis of only one known inhibitor of this enzyme, the challenge was to discover novel inhibitors of PfNDH2 with diverse chemical scaffolds. To this end, using a range of ligand-based chemoinformatics methods, ~17000 compounds were selected from a commercial library of ~750000 compounds. Forty-eight compounds were identified with PfNDH2 enzyme inhibition IC(50) values ranging from 100 nM to 40 μM and also displayed exciting whole cell antimalarial activity. These novel inhibitors were identified through sampling 16% of the available chemical space, while only screening 2% of the library. This study confirms the added value of using multiple ligand-based chemoinformatic approaches and has successfully identified novel distinct chemotypes primed for development as new agents against malaria
- …