136 research outputs found

    Implementation of a siRNA Screen for Prostate Tumour Cell Lines Using Living Cell Arrays

    Get PDF
    Prostate cancer is one of the most common causes of death in men. In this work a siRNA screen of around 1500 cancer-relevant genes was performed using 3 different cell lines (VCaP, LAPC-4, RWPE-1). A novel technique, the living cell array, was initiated in order to obtain information about the biology of Androgeninduced growth in prostate tumour cell lines. This technique is based on the principal of reverse transfection [1] and genes are knocked down by siRNAs. The cells on the living cell array were set under stress by reduction of the androgens in the media while the proliferation and apoptosis were quantified. The statistical analysis of the data implicates the success of the screen and shows that this method is suitable for large-scale experiments.Prostatakrebs ist neben Lungenkrebs eine der häufigsten Todesursachen bei Männern. In dieser Arbeit wurden 1500 potenziell tumorrelevante Gene in drei Zelllinien (VCaP, LAPC-4, RWPE-1) gescreent. Dafür wurde eine neue Technik, die Lebendzellarrays, genutzt, um Informationen über die Biologie Androgen-unabhängiger Prostatazellen zu gewinnen. Die Lebendzellarrays basieren auf dem Prinzip der reversen Transfektion [1], und in Folge werden die mRNAs der gewünschten Gene durch spezifische »silencer RNAs« (siRNAs) ausgeschaltet. Die Zellen wurden parallel sowohl in normalem Medium untersucht als auch mit androgen-reduziertem Medium unter Stress gesetzt. Das Wachstum der Prostatazellen wurde mittels Markern für Proliferation und Apoptose beobachtet. Die Daten der Screens wurden mit Hilfe statistischer Verfahren evaluiert. Die Lebendzellarrays konnten erfolgreich für einen umfangreichen SiRNA-screen angewendet werden

    Revisiting the expression and function of follicle-stimulation hormone receptor in human umbilical vein endothelial cells

    Get PDF
    Expression of follicle-stimulation hormone receptor (FSHR) is confined to gonads and at low levels to some extragonadal tissues like human umbilical vein endothelial cells (HUVEC). FSH-FSHR signaling was shown to promote HUVEC angiogenesis and thereafter suggested to have an influential role in pregnancy. We revisited hereby the expression and functionality of FSHR in HUVECs angiogenesis, and were unable to reproduce the FSHR expression in human umbilical cord, HUVECs or immortalized HUVECs (HUV-ST). Positive controls as granulosa cells and HEK293 cells stably transfected with human FSHR cDNA expressed FSHR signal. In contrast to positive control VEGF, FSH treatment showed no effects on tube formation, nitric oxide production, wound healing or cell proliferation in HUVEC/HUV-ST. Thus, it remains open whether the FSH-FSHR activation has a direct regulatory role in the angiogenesis of HUVECs

    Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields

    Get PDF
    Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.Public Library of Science open acces

    Optimization of Invasion-Specific Effects of Betulin Derivatives on Prostate Cancer Cells through Lead Development

    Get PDF
    The anti-invasive and anti-proliferative effects of betulins and abietane derivatives was systematically tested using an organotypic model system of advanced, castration-resistant prostate cancers. A preliminary screen of the initial set of 93 compounds was performed in two-dimensional (2D) growth conditions using non-transformed prostate epithelial cells (EP156T), an androgen-sensitive prostate cancer cell line (LNCaP), and the castration-resistant, highly invasive cell line PC-3. The 25 most promising compounds were all betulin derivatives. These were selected for a focused secondary screen in three-dimensional (3D) growth conditions, with the goal to identify the most effective and specific anti-invasive compounds. Additional sensitivity and cytotoxicity tests were then performed using an extended cell line panel. The effects of these compounds on cell cycle progression, mitosis, proliferation and unspecific cytotoxicity, versus their ability to specifically interfere with cell motility and tumor cell invasion was addressed. To identify potential mechanisms of action and likely compound targets, multiplex profiling of compound effects on a panel of 43 human protein kinases was performed. These target de-convolution studies, combined with the phenotypic analyses of multicellular organoids in 3D models, revealed specific inhibition of AKT signaling linked to effects on the organization of the actin cytoskeleton as the most likely driver of altered cell morphology and motility.Peer reviewe

    Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas

    Get PDF
    Simple Summary Cancers in the head and neck region are often aggressive and poorly respond to both irradiation or chemotherapy. Chemotherapy is currently limited by a small number of approved drugs. Newer "targeted" drugs, aiming for specific molecules expressed by tumour cells, have not been as beneficial as expected. Research is now investigating new drug targets, involved in the way how tumour cells interact with non-cancer cells from the stroma, the vasculature, and the immune system within the tumour tissues. These highly dynamic processes assist tumour cells to rapidly adapt to any challenges they may encounter during cancer progression or therapy. One such central molecular mechanism, regulating increased tumour cell plasticity, is the Notch signalling pathway. We currently are only beginning to understand the complex interactions of Notch receptors with their ligands, in a broad spectrum of tumour and tumour-associated cells, and how such interactions could represent targets for cancer chemotherapy and personalized medicine. Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC

    Context Matters: NOTCH Signatures and Pathway in Cancer Progression and Metastasis

    Get PDF
    The Notch signaling pathway is a critical player in embryogenesis but also plays various roles in tumorigenesis, with both tumor suppressor and oncogenic activities. Mutations, deletions, amplifications, or over-expression of Notch receptors, ligands, and a growing list of downstream Notch-activated genes have by now been described for most human cancer types. Yet, it often remains unclear what may be the functional impact of these changes for tumor biology, initiation, and progression, for cancer therapy, and for personalized medicine. Emerging data indicate that Notch signaling can also contribute to increased aggressive properties such as invasion, tumor heterogeneity, angiogenesis, or tumor cell dormancy within solid cancer tissues; especially in epithelial cancers, which are in the center of this review. Notch further supports the "stemness" of cancer cells and helps define the stem cell niche for their long-term survival, by integrating the interaction between cancer cells and the cells of the tumor microenvironment (TME). The complexity of Notch crosstalk with other signaling pathways and its roles in cell fate and trans-differentiation processes such as epithelial-to-mesenchymal transition (EMT) point to this pathway as a decisive player that may tip the balance between tumor suppression and promotion, differentiation and invasion. Here we not only review the literature, but also explore genomic databases with a specific focus on Notch signatures, and how they relate to different stages in tumor development. Altered Notch signaling hereby plays a key role for tumor cell survival and coping with a broad spectrum of vital issues, contributing to failed therapies, poor patient outcome, and loss of lives

    Increased Expression and Altered Cellular Localization of Fibroblast Growth Factor Receptor-Like 1 (FGFRL1) Are Associated with Prostate Cancer Progression

    Get PDF
    Fibroblast growth factor receptors (FGFRs) 1–4 are involved in prostate cancer (PCa) regulation, but the role of FGFR-like 1 (FGFRL1) in PCa is unclear. FGFRL1 expression was studied by qRT-PCR and immunohistochemistry of patient tissue microarrays (TMAs) and correlated with clinical patient data. The effects of FGFRL1 knockdown (KD) in PC3M were studied in in vitro culture models and in mouse xenograft tumors. Our results showed that FGFRL1 was significantly upregulated in PCa. The level of membranous FGFRL1 was negatively associated with high Gleason scores (GSs) and Ki67, while increased cytoplasmic and nuclear FGFRL1 showed a positive correlation. Cox regression analysis indicated that nuclear FGFRL1 was an independent prognostic marker for biochemical recurrence after radical prostatectomy. Functional studies indicated that FGFRL1-KD in PC3M cells increases FGFR signaling, whereas FGFRL1 overexpression attenuates it, supporting decoy receptor actions of membrane-localized FGFRL1. In accordance with clinical data, FGFRL1-KD markedly suppressed PC3M xenograft growth. Transcriptomics of FGFRL1-KD cells and xenografts revealed major changes in genes regulating differentiation, ECM turnover, and tumor–stromal interactions associated with decreased growth in FGFRL1-KD xenografts. Our results suggest that FGFRL1 upregulation and altered cellular compartmentalization contribute to PCa progression. The nuclear FGFRL1 could serve as a prognostic marker for PCa patients
    corecore