50 research outputs found

    Healthy lifestyle and life expectancy with and without Alzheimer's dementia: population based cohort study.

    Get PDF
    OBJECTIVE To determine the impact of lifestyle factors on life expectancy lived with and without Alzheimer's dementia. DESIGN Prospective cohort study. SETTING The Chicago Health and Aging Project, a population based cohort study in the United States. PARTICIPANTS 2449 men and women aged 65 years and older. MAIN EXPOSURE A healthy lifestyle score was developed based on five modifiable lifestyle factors: a diet for brain health (Mediterranean-DASH Diet Intervention for Neurodegenerative Delay-MIND diet score in upper 40% of cohort distribution), late life cognitive activities (composite score in upper 40%), moderate or vigorous physical activity (≄150 min/week), no smoking, and light to moderate alcohol consumption (women 1-15 g/day; men 1-30 g/day). MAIN OUTCOME Life expectancy with and without Alzheimer's dementia in women and men. RESULTS Women aged 65 with four or five healthy factors had a life expectancy of 24.2 years (95% confidence interval 22.8 to 25.5) and lived 3.1 years longer than women aged 65 with zero or one healthy factor (life expectancy 21.1 years, 19.5 to 22.4). Of the total life expectancy at age 65, women with four or five healthy factors spent 10.8% (2.6 years, 2.0 to 3.3) of their remaining years with Alzheimer's dementia, whereas women with zero or one healthy factor spent 19.3% (4.1 years, 3.2 to 5.1) with the disease. Life expectancy for women aged 65 without Alzheimer's dementia and four or five healthy factors was 21.5 years (20.0 to 22.7), and for those with zero or one healthy factor it was 17.0 years (15.5 to 18.3). Men aged 65 with four or five healthy factors had a total life expectancy of 23.1 years (21.4 to 25.6), which is 5.7 years longer than men aged 65 with zero or one healthy factor (life expectancy 17.4 years, 15.8 to 20.1). Of the total life expectancy at age 65, men with four or five healthy factors spent 6.1% (1.4 years, 0.3 to 2.0) of their remaining years with Alzheimer's dementia, and those with zero or one healthy factor spent 12.0% (2.1 years, 0.2 to 3.0) with the disease. Life expectancy for men aged 65 without Alzheimer's dementia and four or five healthy factors was 21.7 years (19.7 to 24.9), and for those with zero or one healthy factor life expectancy was 15.3 years (13.4 to 19.1). CONCLUSION A healthy lifestyle was associated with a longer life expectancy among men and women, and they lived a larger proportion of their remaining years without Alzheimer's dementia. The life expectancy estimates might help health professionals, policy makers, and stakeholders to plan future healthcare services, costs, and needs

    Feasibility study for detection of retinal amyloid in clinical trials: The Anti-Amyloid Treatment in Asymptomatic Alzheimer\u27s Disease (A4) trial

    Get PDF
    Introduction: The retina and brain exhibit similar pathologies in patients diagnosed with neurodegenerative diseases. The ability to access the retina through imaging techniques opens the possibility for non-invasive evaluation of Alzheimer\u27s disease (AD) pathology. While retinal amyloid deposits are detected in individuals clinically diagnosed with AD, studies including preclinical individuals are lacking, limiting assessment of the feasibility of retinal imaging as a biomarker for early-stage AD risk detection. Methods: In this small cross-sectional study we compare retinal and cerebral amyloid in clinically normal individuals who screened positive for high amyloid levels through positron emission tomography (PET) from the Anti-Amyloid Treatment in Asymptomatic Alzheimer\u27s Disease (A4) trial as well as a companion cohort of individuals who exhibited low levels of amyloid PET in the Longitudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) study. We quantified the number of curcumin-positive fluorescent retinal spots from a small subset of participants from both studies to determine retinal amyloid deposition at baseline. Results: The four participants from the A4 trial showed a greater number of retinal spots compared to the four participants from the LEARN study. We observed a positive correlation between retinal spots and brain amyloid, as measured by the standardized uptake value ratio (SUVr). Discussion: The results of this small pilot study support the use of retinal fundus imaging for detecting amyloid deposition that is correlated with brain amyloid PET SUVr. A larger sample size will be necessary to fully ascertain the relationship between amyloid PET and retinal amyloid both cross-sectionally and longitudinally

    Amyloid-related imaging abnormalities in the DIAN-TU-001 trial of gantenerumab and solanezumab: lessons from a trial in dominantly inherited Alzheimer disease

    Get PDF
    OBJECTIVE: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). METHODS: 142 DIAD mutation carriers received either gantenerumab SC (n=52), solanezumab IV (n=50), or placebo (n=40). Participants underwent assessments with the Clinical Dementia RatingÂź (CDRÂź), neuropsychological testing, CSF biomarkers, ÎČ-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. RESULTS: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (OR=9.1, CI[1.2, 412.3]; p=0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR=5.0, CI[1.0, 30.4]; p=0.055), as were individuals with microhemorrhage at baseline (OR=13.7, CI[1.2, 163.2]; p=0.039). No ARIA-E was observed at the initial 225mg/month gantenerumab dose, and most cases were observed at doses >675mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR>0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. INTERPRETATION: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation. This article is protected by copyright. All rights reserved

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.Peer reviewe

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Cerebral small vessel disease genomics and its implications across the lifespan

    Get PDF
    White matter hyperintensities (WMH) are the most common brain-imaging feature of cerebral small vessel disease (SVD), hypertension being the main known risk factor. Here, we identify 27 genome-wide loci for WMH-volume in a cohort of 50,970 older individuals, accounting for modification/confounding by hypertension. Aggregated WMH risk variants were associated with altered white matter integrity (p = 2.5×10-7) in brain images from 1,738 young healthy adults, providing insight into the lifetime impact of SVD genetic risk. Mendelian randomization suggested causal association of increasing WMH-volume with stroke, Alzheimer-type dementia, and of increasing blood pressure (BP) with larger WMH-volume, notably also in persons without clinical hypertension. Transcriptome-wide colocalization analyses showed association of WMH-volume with expression of 39 genes, of which four encode known drug targets. Finally, we provide insight into BP-independent biological pathways underlying SVD and suggest potential for genetic stratification of high-risk individuals and for genetically-informed prioritization of drug targets for prevention trials.</p
    corecore