39 research outputs found

    Socio-demographic and clinical characterization of patients with obsessive-compulsive tic-related disorder (OCTD) : An Italian multicenter study

    Get PDF
    © Copyright by Pacini Editore SrlIn the DSM-5 a new "tic-related" specifier for obsessive compulsive disorder (OCD) has been introduced, highlighting the importance of an accurate characterization of patients suffering from obsessive-compulsive tic-related disorder ("OCTD"). In order to characterize OCTD from a socio-demographic and clinical perspective, the present multicenter study was carried out. The sample consists of 266 patients, divided in two groups with lifetime diagnoses of OCD and OCTD, respectively. OCTD vs OCD patients showed a significant male prevalence (68.5% vs 48.5%; p < .001), a higher rate of psychiatric comorbidities (69.4 vs 50%; p < .001) - mainly with neurodevelopmental disorders (24 vs 0%; p < .001), a lower education level and professional status (middle school diploma: 25 vs 7.6%; full-Time job 44.4 vs 58%; p < .001). Moreover, OCTD vs OCD patients showed significantly earlier age of OCD and psychiatric comorbidity onsets (16.1 ± 10.8 vs 22.1 ± 9.5 years; p < .001, and 18.3 ± 12.8 vs 25.6 ± 9.4: p < .001, respectively). Patients with OCTD patients were treated mainly with antipsychotic and with a low rate of benzodiazepine (74.2 vs 38.2% and 20.2 vs 31.3%, respectively; p < .001). Finally, OCTD vs OCD patients showed higher rates of partial treatment response (58.1 vs 38%; p < .001), lower rates of current remission (35.5 vs 54.8%; p < .001) and higher rates of suicidal ideation (63.2 vs 41.7%; p < .001) and attempts (28.9 vs 8.3%; p < .001). Patients with OCTD report several unfavorable socio-demographic and clinical characteristics compared to OCD patients without a history of tic. Additional studies on larger sample are needed to further characterize OCTD patients from clinical and therapeutic perspectives.Peer reviewedFinal Published versio

    MobiDB: Intrinsically disordered proteins in 2021

    Get PDF
    The MobiDB database (URL: https://mobidb.org/) provides predictions and annotations for intrinsically disordered proteins. Here, we report recent developments implemented in MobiDB version 4, regarding the database format, with novel types of annotations and an improved update process. The new website includes a re-designed user interface, a more effective search engine and advanced API for programmatic access. The new database schema gives more flexibility for the users, as well as simplifying the maintenance and updates. In addition, the new entry page provides more visualisation tools including customizable feature viewer and graphs of the residue contact maps. MobiDB v4 annotates the binding modes of disordered proteins, whether they undergo disorder-to-order transitions or remain disordered in the bound state. In addition, disordered regions undergoing liquid-liquid phase separation or post-translational modifications are defined. The integrated information is presented in a simplified interface, which enables faster searches and allows large customized datasets to be downloaded in TSV, Fasta or JSON formats. An alternative advanced interface allows users to drill deeper into features of interest. A new statistics page provides information at database and proteome levels. The new MobiDB version presents state-of-the-art knowledge on disordered proteins and improves data accessibility for both computational and experimental users.Fil: Piovesan, Damiano. Università di Padova; ItaliaFil: Necci, Marco. Università di Padova; ItaliaFil: Escobedo, Nahuel Abel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Monzon, Alexander Miguel. Università di Padova; ItaliaFil: Viczián, András. Università di Padova; ItaliaFil: Mičetić, Ivan. Università di Padova; ItaliaFil: Quaglia, Federica. Università di Padova; ItaliaFil: Paladin, Lisanna. Università di Padova; ItaliaFil: Ramasamy, Pathmanaban. Vrije Unviversiteit Brussel; Bélgica. University of Ghent; Bélgica. Interuniversity Institute of Bioinformatics in Brussels; BélgicaFil: Dosztányi, Zsuzsanna. Eötvös Loránd University; HungríaFil: Vranken, Wim F.. Vrije Unviversiteit Brussel; Bélgica. Interuniversity Institute of Bioinformatics in Brussels; BélgicaFil: Davey, Norman E.. The Institute Of Cancer Research; Reino UnidoFil: Parisi, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Fuxreiter, Monika. Università di Padova; ItaliaFil: Tosatto, Silvio C. E.. Università di Padova; Itali

    MobiDB 3.0: More annotations for intrinsic disorder, conformational diversity and interactions in proteins

    Get PDF
    The MobiDB (URL: mobidb.bio.unipd.it) database of protein disorder and mobility annotations has been significantly updated and upgraded since its last major renewal in 2014. Several curated datasets for intrinsic disorder and folding upon binding have been integrated from specialized databases. The indirect evidence has also been expanded to better capture information available in the PDB, such as high temperature residues in X-ray structures and overall conformational diversity. Novel nuclear magnetic resonance chemical shift data provides an additional experimental information layer on conformational dynamics. Predictions have been expanded to provide new types of annotation on backbone rigidity, secondary structure preference and disordered binding regions. MobiDB 3.0 contains information for the complete UniProt protein set and synchronization has been improved by covering all UniParc sequences. An advanced search function allows the creation of a wide array of custom-made datasets for download and further analysis. A large amount of information and cross-links to more specialized databases are intended to make MobiDB the central resource for the scientific community working on protein intrinsic disorder and mobility.Fil: Piovesan, Damiano. Università di Padova; ItaliaFil: Tabaro, Francesco. Università di Padova; ItaliaFil: Paladin, Lisanna. Università di Padova; ItaliaFil: Necci, Marco. Università di Padova; Italia. Instituto Agrario San Michele all'Adige Fondazione Edmund Mach; ItaliaFil: Micetić, Ivan. Università di Padova; ItaliaFil: Camilloni, Carlo. Università degli Studi di Milano; ItaliaFil: Davey, Norman. Universidad de Dublin; IrlandaFil: Dosztányi, Zsuzsanna. Eötvös Loránd University; HungríaFil: Mészáros, Bálint. Eötvös Loránd University; HungríaFil: Monzón, Alexander. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Parisi, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; ArgentinaFil: Schad, Eva. Hungarian Academy Of Sciences; HungríaFil: Sormanni, Pietro. University of Cambridge; Reino UnidoFil: Tompa, Peter. Vrije Unviversiteit Brussel; BélgicaFil: Vendruscolo, Michele. University of Cambridge; Reino UnidoFil: Vranken, Wim F.. Vrije Unviversiteit Brussel; BélgicaFil: Tosatto, Silvio C. E.. Università di Padova; Itali

    Global Assessment Report on Disaster Risk Reduction 2019

    Get PDF
    The Global Assessment Report on Disaster Risk Reduction (GAR) is the flagship report of the United Nations on worldwide efforts to reduce disaster risk

    An intrinsically disordered proteins community for ELIXIR.

    Get PDF
    Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) are now recognised as major determinants in cellular regulation. This white paper presents a roadmap for future e-infrastructure developments in the field of IDP research within the ELIXIR framework. The goal of these developments is to drive the creation of high-quality tools and resources to support the identification, analysis and functional characterisation of IDPs. The roadmap is the result of a workshop titled "An intrinsically disordered protein user community proposal for ELIXIR" held at the University of Padua. The workshop, and further consultation with the members of the wider IDP community, identified the key priority areas for the roadmap including the development of standards for data annotation, storage and dissemination; integration of IDP data into the ELIXIR Core Data Resources; and the creation of benchmarking criteria for IDP-related software. Here, we discuss these areas of priority, how they can be implemented in cooperation with the ELIXIR platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for an IDP Community in ELIXIR and is an appeal to identify and involve new stakeholders

    InterPro in 2019: improving coverage, classification and access to protein sequence annotations

    Get PDF
    The InterPro database (http://www.ebi.ac.uk/interpro/) classifies protein sequences into families and predicts the presence of functionally important domains and sites. Here, we report recent developments with InterPro (version 70.0) and its associated software, including an 18% growth in the size of the database in terms on new InterPro entries, updates to content, the inclusion of an additional entry type, refined modelling of discontinuous domains, and the development of a new programmatic interface and website. These developments extend and enrich the information provided by InterPro, and provide greater flexibility in terms of data access. We also show that InterPro's sequence coverage has kept pace with the growth of UniProtKB, and discuss how our evaluation of residue coverage may help guide future curation activities
    corecore