924 research outputs found

    Simulation of the material softening during hot metal forming

    Get PDF
    Deformation softening is quite often observed during hot working of different alloys. Steels, aluminium, titanium or nickel alloys can demonstrate a decrease in flow stress under active deformation at constant temperatures and strain rates. Though the background microstructural mechanisms as well as the softening rates can be quite different, the treatment of such processes requires special attention. Deformation softening can cause significant non-uniformity of the metal flow resulting in flow localization, formation of shear bands and variation of the microstructure across the workpiece. This paper is devoted to the investigation of the specific issues which arise in this respect in FEM simulation of processes involving softening. The possible role of softening in shear band formation is studied using numerical simulation and physical modelling. The effect of the softening rate on the probability of flow localization is discussed. The interplay of deformation softening with the stain rate and temperature sensitivity is demonstrated using as an example the simulation of Equal Channel Angular Pressing (ECAP). An approach to account for the deformation softening in FEM simulations via process modelling of the microstructure refinement is proposed

    Effect of Exponentially Variable Viscosity and Permeability on Blasius Flow of Carreau Nano Fluid over an Electromagnetic Plate through a Porous Medium

    Get PDF
    The present investigation draws scholars' attention to the effect of exponential variable viscosity modeled by Vogel and variable permeability on stagnation point flow of Carreau Nanofluid over an electromagnetic plate through a porous medium. Brownian motion and thermophoretic diffusion mechanism are taken into consideration. An efficient fourth-order RK method along with shooting technique are implemented to obtain the required solution of the non-dimensional modeled equations. The contribution of the present study is that augmented electromagnetic field strength due to the suitable arrangement of the plate and that of porosity parameter yield an accelerated motion while that of viscosity parameter produces retarded motion of shear-thickening fluid, contrary to shear-thinning fluid. At the same time, it discusses the inclusion of porous matrix which controls the thermal as well as concentration boundary layers, while enhanced Brownian motion exhibits diametrically opposite trend for them in response to shear-thickening fluid

    Phenolic compounds isolated from Pilea microphylla prevent radiation-induced cellular DNA damage

    Get PDF
    AbstractSix phenolic compounds namely, quercetin-3-O-rutinoside (1), 3-O-caffeoylquinic acid (2), luteolin-7-O-glucoside (3), apigenin-7-O-rutinoside (4), apigenin-7-O-β-d-glucopyranoside (5) and quercetin (6) were isolated from the whole plant of Pilea microphylla using conventional open-silica gel column chromatography and preparative HPLC. Further, these compounds were characterized by 1D, 2D NMR techniques and high-resolution LC–MS. Compounds 1–3 and 6 exhibited significant antioxidant potential in scavenging free radicals such as DPPH, ABTS and SOD with IC50 of 3.3–20.4μmol/L. The same compounds also prevented lipid peroxidation with IC50 of 10.4–32.2μmol/L. The compounds also significantly prevented the Fenton reagent-induced calf thymus DNA damage. Pre-treatment with compounds 1–3 and 6 in V79 cells attenuated radiation-induced formation of reactive oxygen species, lipid peroxidation, cytotoxicity and DNA damage, correlating the antioxidant activity of polyphenols with their radioprotective effects. Compounds 1, 3 and 6 significantly inhibited lipid peroxidation, presumably due to 3′,4′-catechol ortho-dihydroxy moiety in the B-ring, which has a strong affinity for phospholipid membranes. Oxidation of flavonoids, with catechol structure on B-ring, yields a fairly stable ortho-semiquinone radical by facilitating electron delocalization, which is involved in antioxidant mechanism. Hence, the flavonoid structure, number and location of hydroxyl groups together determine the antioxidant and radioprotection mechanism

    Numerical simulation of hydrothermal features of Cu-H2O nanofluid natural convection within a porous annulus considering diverse configurations of heater

    Get PDF
    The purpose of the current study is to numerically investigate the effects of shape factors of nanoparticles on natural convection in a fluid-saturated porous annulus developed between the elliptical cylinder and square enclosure. A numerical method called the control volume-based finite element method is implemented for solving the governing equations. The modified flow and thermal structures and corresponding heat transfer features are investigated. Numerical outcomes reveal very good grid independency and excellent agreement with the existing studies. The obtained results convey that at a certain aspect ratio, an increment in Rayleigh and Darcy numbers significantly augments the heat transfer and average Nusselt number. Further, enhancement of Rayleigh number increases the velocity of nanofluid, while that of aspect ratio of the elliptical cylinder shows the opposite trend

    Comparative transcriptome analysis identified candidate genes for late leaf spot resistance and cause of defoliation in groundnut

    Get PDF
    Late leaf spot (LLS) caused by fungus Nothopassalora personata in groundnut is responsible for up to 50% yield loss. To dissect the complex nature of LLS resistance, comparative transcriptome analysis was performed using resistant (GPBD 4), susceptible (TAG 24) and a resistant introgression line (ICGV 13208) and identified a total of 12,164 and 9954 DEGs (differentially expressed genes) respectively in A- and B-subgenomes of tetraploid groundnut. There were 135 and 136 unique pathways triggered in A- and B-subgenomes, respectively, upon N. personata infection. Highly upregulated putative disease resistance genes, an RPP-13 like (Aradu.P20JR) and a NBS-LRR (Aradu.Z87JB) were identified on chromosome A02 and A03, respectively, for LLS resistance. Mildew resistance Locus (MLOs)-like proteins, heavy metal transport proteins, and ubiquitin protein ligase showed trend of upregulation in susceptible genotypes, while tetratricopeptide repeats (TPR), pentatricopeptide repeat (PPR), chitinases, glutathione S-transferases, purple acid phosphatases showed upregulation in resistant genotypes. However, the highly expressed ethylene responsive factor (ERF) and ethylene responsive nuclear protein (ERF2), and early responsive dehydration gene (ERD) might be related to the possible causes of defoliation in susceptible genotypes. The identified disease resistance genes can be deployed in genomics-assisted breeding for development of LLS resistant cultivars to reduce the yield loss in groundnut

    Dye-Sensitized Nonstoichiometric Strontium Titanate Core-Shell Photocathodes for Photoelectrosynthesis Applications

    Get PDF
    A core-shell approach that utilizes a high-surface-area conducting core and an outer semiconductor shell is exploited here to prepare p-type dye-sensitized solar energy cells that operate with a minimal applied bias. Photocathodes were prepared by coating thin films of nanocrystalline indium tin oxide with a 0.8 nm Al2O3 seeding layer, followed by the chemical growth of nonstoichiometric strontium titanate. Films were annealed and sensitized with either a porphyrin chromophore or a chromophore-catalyst molecular assembly consisting of the porphyrin covalently tethered to the ruthenium complex. The sensitized photoelectrodes produced cathodic photocurrents of up to -315 μA/cm2 under simulated sunlight (AM1.5G, 100 mW/cm2) in aqueous media, pH 5. The photocurrent was increased by the addition of regenerative hole donors to the system, consistent with slow interfacial recombination kinetics, an important property of p-type dye-sensitized electrodes

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.
    corecore