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Abstract 

The purpose of the current study is to numerically investigate the effects of shape factors of 

nanoparticles on natural convection in a fluid saturated porous annulus developed between the 

elliptical cylinder and square enclosure. A numerical method called the control volume-based 

finite element method (CVFEM) is implemented for solving the governing equations. The 

modified flow and thermal structures and corresponding heat transfer features are investigated. 

Numerical outcomes reveal very good grid independency and excellent agreement with the 

existing studies. The obtained results convey that at a certain aspect ratio, increment of 

Rayleigh and Darcy numbers significantly augments the heat transfer and average Nusselt 

number. Further, enhancement of Rayleigh number increases the velocity of nanofluid while 

that of aspect ratio of the elliptical cylinder shows the opposite trend. 

Keywords: Square enclosure; inclined elliptical cylinder; Cu-H2O nanofluids; diverse 

configurations of heater; CVFEM. 

 

Nomenclature 

( , )u v  velocity components in ( , )x y directions 


  

density 

( )pC  heat capacity 
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  
 

dynamic viscosity 


  

thermal expansion 
 

k   thermal conductivity 

K   permeability parameter
 

T   temperature
 

p   pressure 

m   shape factor 

   vorticity 

   stream function 

   thermal diffusivity 

hT   temperature at the hot side of the enclosure 

cT   temperature at the cold side of the enclosure 

Pr   Prandtl number 

Ra   Raleigh number 

Da   Darcy number 

AR   aspect ratio  

 

Subscripts 

f base fluid 

nf nanofluid   

s solid nanoparticle 

 

1. Introduction 

Engineers constantly look for innovative methods to improve heat transfer performance by 

implementing a wide range of techniques. Natural convection is widely perceived as the 

ultimate heat transfer process in numerous engineering devices includes enclosures with heat-

generating elements. Natural Convection in porous media has attracted intensive attention from 
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researchers in the view of its relevance in infiltrating molten metal, transport processes, 

extracting crude oil from oil reservoirs, geothermal operations, chemical reactors, thermal 

reservoirs, insulating buildings, see for example Nield and Bejan [1], Ingham and Pop [2], Sajid 

and Ali [3], Guerrero Martinez et al.  [4,5]. In particular, the problem of natural convection of 

nanofluids in porous media has already received considerable attention. Here, we briefly 

review some of the recent works in this field. 

             Siavashi et al. [6] have examined the mixed convection within a porous enclosure filled 

with non-Newtonian nanoliquid. Izadi et al. [7] discussed the impingement of a jet of air, 

hydrogen and Cu-H2O nanofluid over a hot surface covered by porous media with non-uniform 

input jet velocity. They observed that rise in the volume fraction of nanoliquid augmented the 

heat transfer rate. They also perceived that the utilization of non-uniform impingement jet with 

diminishing velocity distribution upgrades the thermal performance of the heat sink. Xiong et 

al. [8] investigated the influences of nanoparticles with diverse shapes on magnetic radiative 

flow within wavy porous space. In their investigation, roles of magnetic parameter, radiation 

parameter, nanoparticles' shape and Rayleigh number have been explored. Outputs revealed 

that applied magnetic field uplifts the temperature distribution and the Nuave amplifies with Ra 

and Da numbers as well as nanoparticles' shape, while magnetic field has the opposite impact.  

           Bozorg et al. [9] carried out a numerical investigation of heat transfer and oil–

Al2O3 nanoliquid flow inside a parabolic trough solar receiver with internal porous structure. 

The results displayed that incremented Reynolds number and volume fraction of nanoparticle 

yielded an augmentation in thermal efficiency, pressure drop and heat transfer coefficient. 

However, the rise in inlet temperature reduces them. At Re higher than 30×104, concurrent 

usage of nanoparticles and porous structure with Da = 0.3 augments pressure drops up to 42.5% 

and 42%, exergetic efficiencies by 7% and 15%, thermal efficiencies up to 8% and 15% and 

heat transfer coefficients nearly 7%, and 20% for inlet temperature of 500 and 600 K, 

respectively. Varol et al. [10] scrutinized entropy generation during natural convection inside 

non-evenly heated porous triangular cavity. Lee et al. [11] studied natural convection inside an 

annulus among a circular cylinder and enclosure locally heated from the bottom wall. Yoon et 

al. [12] examined the role of natural convection within a square enclosure considering two 

cylinders as heater and cooler. Sheremet et al. [13] implemented Tiwari and Das nanofluid 

model and explored the effects of natural convection inside a square porous cavity. 

Selimefendigil and Öztop [14] demonstrated the impacts of internal heat generation and 

inclined magnetic field on natural convection in a flexible sided triangular cavity.   

https://www.sciencedirect.com/science/article/pii/S0360319918341788
https://www.sciencedirect.com/science/article/pii/S0360319918341788
https://www.sciencedirect.com/science/article/pii/S0360319918341788
https://www.sciencedirect.com/science/article/pii/S0167732219317623
https://www.sciencedirect.com/science/article/pii/S0167732219317623
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             Mun et al. [15] analyzed the effects of vertical and horizontal equal distance of internal 

hot cylinders on natural convection inside a cold enclosure. Bondareva and Sheremet [16] 

investigated natural convection melting in a square cavity with a local heater. Rajarathinam 

and Nithyadevi [17] showed the heat transfer growth of Cu-H2O nanliquid in an inclined porous 

cavity with internal heat generation. Dogonchi and Ganji [18] investigated the impact of 

Cattaneo-Christov heat flux on magnetic radiative nanoliquid flow and heat transfer among 

parallel plates. Further, Dogonchi et al. [19] studied the magnetic natural convection of Cu-

H2O nanoliquid in a horizontal semi-cylinder with a local triangular heater.  In a separate work, 

Dogonchi et al. [20] revealed through numerical analysis the influences of natural convection 

of Cu-H2O nanoliquid filling triangular enclosure with semicircular bottom wall.  

              In a numerical study, Nayak [21] worked on magnetic 3D flow and heat transfer 

analysis of nanofluid by shrinking surface and declared the effect of thermal radiation and 

viscous dissipation there. The same group pf authors [22] discussed natural convection effects 

on 3D magnetic flow of nanofluid over permeable stretched surface with thermal radiation. 

Malekpour et al. [23] analyzed the effects of magnetic, natural convection and entropy 

generation of Cu-H2O nanoliquid in an I-shape enclosure. Further, Graphene nanoplatelets 

nanoliquids thermal and hydrodynamic performance on integral fin heat sink ( Arshad and Ali 

[24]), pressure drop and heat transfer in a straight mini-channel heat sink using TiO2 nanofluid 

( Arshad and Ali [25]), solar dish assisted S-CO2 Brayton cycle using nanoliquids flow (Khan 

et al. [26]) and potential evaluation of ferric oxide and titania nanofluids  (Babar and Ali [27] 

) were carried out. Many other works have been conducted on natural convection within a 

variety of enclosures containing diverse types of inner bodies of various configurations 

implementing numerical computations/approaches such as finite volume, finite difference, and 

finite element method [28-34]. 

 In order to analyze the problems associated with flow through porous media the models 

such as the Darcy, Forchheimer-extended Darcy, and the Brinkman-extended Darcy models 

are usually invoked. Choi and Eastman [35] developed nanofluids (nanoscale particles are 

suspended in a base fluid) which served as the best medium for an effective and efficient 

convective heat transfer process imparting high-performance energy efficient cooling system 

needed for many modern applications. According to the thermo-physical features of nanofluids 

as well as the particle shapes, sizes, stabilities and volume fractions, nanoliquids with superior 

thermal conductivity (compared to the base fluids) augments its heat transfer characteristics 

[36]. Further, introduction of porous media upgrades conduction in addition to the existing 

convection because of the larger surface contact area occupying among porous structure and 

https://www.sciencedirect.com/science/article/abs/pii/S0017931016321573#!
https://www.sciencedirect.com/science/article/abs/pii/S0017931016321573#!
https://www.sciencedirect.com/science/article/abs/pii/S0017931016321573#!
https://www.sciencedirect.com/science/article/abs/pii/S0017931016321573#!


5 
 

working fluid. Consequently, simultaneous application of nanofluids and porous media 

augments HTR tremendously in comparatively smaller size systems. In this regard, flow 

through porous media in diverse geometries (Mahdi et al. [37], Kasaeian et al. [38], Torabi et 

al. [39] and Nayak et al. [40]) and the impacts of porous fins and Cu-H2O nano-liquid on 

entropy generation in natural convection have been considered. Also, application of Darcy–

Brinkman–Forchheimer model on the porous region and two-phase mixture model for 

nanofluid (Siavashi et al. [41]) has received some attention. Furthermore, existing studies have 

considered the use of parallel LBM for investigating the impact of linear temperature 

distributions of side walls on entropy generation in a porous enclosure loaded with copper-

water nanofluid (Ghasemi and Siavashi [42]).  

              Bararnia et al. [43] examined the thermal and hydrodynamic behaviors during natural 

convection around a horizontal elliptical cylinder within a cavity for Rayleigh numbers of 103-

106.  They revealed that the mean Nu  augmented with uplift in the Rayleigh number. 

Gholamalipour et al. [44] conveyed the influence of eccentricity of heat source inside a porous 

annulus on the entropy generation and natural convection. Siavashi et al. [45] revealed the 

behavior of double-pipe heat exchanger using nanoliquid and considering porous media. Asiaei 

et al. [46] disclosed the multi-layered porous foam impacts on entropy generation and heat 

transfer of nanoliquid mixed convection within a lid-driven cavity. In a series of numerical 

investigations, Alizadeh and co-workers examined heat transfer by mixed convection of 

nanofluids in porous media around cylinders [47-49]. These investigations highlighted the 

effects of non-cubic porous enclosures and their considerable effects upon the thermal behavior 

of the system. 

 The preceding review of literature reveals that a significant effort has been already put 

on analyzing the influences of several thermal boundary conditions during natural convection 

in fluid-saturated porous media. However, limited works exist on natural convection in the 

nanofluid-saturated porous enclosure involving elliptical cylinder as local heaters. It is 

important to note that local heaters as the heated elements can be readily found in electronic 

systems. Natural convection inside an annulus between an inclined elliptical cylinder and a 

square enclosure has been already studied [50]. However, to the best of authors’ knowledge, 

the influences of diverse configurations of the heater and porous medium on heat transfer in 

such configuration are yet to be explored. The current study aims to fill in this gap by 

investigating the impacts of different configurations of an elliptical heater and Darcy model 

associated with different shape factors in natural convection of Cu-H2O nanoliquid inside  an 
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annulus between an inclined elliptical cylinder and a square enclosure. The influences of 

pertinent parameters such as aspect ratio, Darcy number, Raleigh number and shape factor of 

the study on streamlines, isotherms, the local Nusselt number distribution and averaged Nusselt 

number are explored and discussed. 

2. Problem description and the involved fundamental equations 

In the current study, natural convection of Cu-H2O nanoliquid inside a porous annulus among 

an inclined elliptical cylinder and a square enclosure is analyzed (see Fig. 1).Using the 

Boussinesq approximation the governing equations can be expressed as [32,33] 

0
u v

x y

 
+ =

 
 (1) 

2 2

2 2

1 nf nf

nf nf

u u p u u
u v u

x y x x y K

 

 

     
+ = − + + − 

     
 (2) 

( )
2 2

2 2

1 nf nf
nf c

nf nf

v v p v v
u v g T T v

x y y x y K

 


 

     
+ = − + + + − − 

     
 (3) 

2 2

2 2nf

T T T T
u v

x y x y


    
+ = + 

    
 (4) 

Here, u, v, T, K, and p denote the velocity in the x direction, the velocity in the y direction, the 

temperature, the permeability of the porous medium and the pressure, respectively. 

Considering the impact of nanoparticles shape, the nf , ( )p nf
C , ( )

nf
 , nf , and nfk are 

defined as follows [33,51,52] 

( )1nf f s   = − +  (5) 

( ) ( )( ) ( )1p p pnf f s
C C C    = − +  (6) 

( ) ( )( ) ( )1
nf f s

    = − +  (7) 

( )
2.5

1

f
nf





=

−
 (8) 
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( ) ( ) ( )

( ) ( )

1 1

1

f s f snf

f f s s f

m k k m k kk

k m k k k k





− + + − −
=

− + − −
 (9) 

Here, m denotes the shape factor so that its values can be found in Table 1 [32,53]. Moreover, 

Table 2 [41] portrays the nanoliquid thermo-physical features. 

The vorticity ( ) and stream function ( ) are expressed as follows: 

,    ,    
u v

v u
x y y x

 


   
= − = = − +

   
 (10) 

Considering the following dimensionless variables: 

2

,    ,    ,    ,    ,    ,    c

f f f f h c

T Tx y L uL vL
X Y U V

L L T T

 


   

−
= =  =  = = = =

−
 (11) 

the governing equations reduce to non-dimensional form: 

2 2

2 2
Pr Prnf f nf

f nf f

Ra
Y X X Y X Y Da X

   

  

          
− = + − + 

       
 (12) 

2 2

2 2

nf

fY X X Y X Y

   



      
− = + 

      
 (13) 

2 2

2 2X Y

   
+ = −

 
 (14) 

under the boundary conditions: 

1 =  on the inner inclined elliptical wall 
(15) 

0 =  on the outer walls 

0 =  on the all walls  

where 
2Da K L= , ( ) 3 /f h c f fRa g T T L  = − and Pr /f f = denote the Darcy, Rayleigh 

number and Prandtl numbers, respectively. 

The Local and average Nusselt numbers (Nuloc. and Nuave.) along the cold wall can be defined 

as: 

.
nf

loc

f

k
Nu

k n


=


, 

. .
0

1 S

ave locNu Nu ds
S

=   (16) 

where S denotes the length of the cold wall. 
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3. Numerical solution and validation 

The control volume-based finite element method (CVFEM) is utilized to solve the developed 

governing equations. CVFEM is a hybrid numerical method. In this method the computational 

domain is discretized with linear-triangular meshes. This method utilizes upwind scheme to 

discretize the advection term. Finally, the algebraic equations are solved via Gauss-Seidel 

approach. For more information about CVFEM, one can refer to Refs [54,55]. Validation of 

the current code is shown in figure 2. It can be deduced that our code has superb potential to 

solve complex problems. Further, to ensure mesh independency, Nuave. is gained for diverse 

mesh sizes (see table 3). 

4. Results and discussion 

In this section, the impact of the embedded parameters including Rayleigh number 

(Ra=103,104,105), Darcy number (Da=0.1,100,200), aspect ratio (AR=0.3,0.4,0.5), shape 

factor of nanoparticles (m=3,4.8,5.7), and the volume fraction of nanofluid ( ) on natural 

convection of Cu-H2O nanoliquid inside a porous annulus is investigated. The annulus forms 

between an inclined elliptical cylinder and a square enclosure and the behaviours of pertinent 

parameters are illustrated in Figs. 3-11. The influence of shape factors of nanoparticles upon 

the average Nusselt number aveNu is noted from Table 4. At a certain amount of Ra , increase in

m grows aveNu in the order of nanoparticle types: spherical ( )3m = , cylindrical ( )4.8m = and platelet

( )5.7m = . At fixed Ra ( )3 4 510 10 10Ra or or= , we establish a relation between nanoparticle 

shapes and aveNu as ( ) ( ) ( )ave ave avespherical cylindrical platelet
Nu Nu Nu  . This indicates that the minimum 

heat transfer rate is attained for spherical nanoparticles and maximum heat transfer rate is attained for 

platelet nanoparticles in nanofluids irrespective of the value of Ra ( )3 4 510 10 10Ra or or= . 

Further, increment in Ra grows aveNu irrespective of the shape of nanoparticles.  More elaborately, we 

ascertain that ( ) ( ) ( )3 4 510 10 10ave ave aveRa Ra Ra
Nu Nu Nu

= = =
  for all spherical, cylindrical and platelet 

nanoparticles in nanofluids. Regardless of the shape of nanoparticles (spherical, cylindrical and 

platelet), the aveNu
 
is minimum at 310Ra = and maximum at 510Ra = . 

 

4.1 The influences of active parameters on streamlines and isotherms 
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Fig. 3 illustrates the behaviour of isothermal lines and streamlines for diverse values of 

Rayleigh number Ra , associated with nanoliquid having volume fraction of 0.02 ( )2% =

and spherical nanoparticle ( )3m = and aspect ratio 0.5AR = . From eq. (12) it is clear that Ra

possesses a positive correlation with the strength of streamlines as a result of which increment 

in Ra  yields the characteristic growth of streamlines. This implicates that the impact of 

convection on the fluid flow and heat transfer upsurges. Further, just outside the outer rigid 

elliptical wall, the nanofluid gets warmed and progresses upward due to its lower density. 

However, in the upper layer, nanofluid gets cooled and thus moves downward. Hence, the 

rotation of the nanofluid is because of the presence of porous medium ( )0.1Da = . At 310Ra =

, one vertex on the left part of the cavity and two vertices on the right part of the cavity are 

formed (Fig.3). The flow as well as thermal field exhibits a symmetric pattern near the vertical 

centerline inside the cavity.  

           When Ra  grows, i.e. at 410Ra = , the vertices on both parts of the cavity expand. With 

further increment in Ra , i.e. at 510Ra = , vertex on the left part of the cavity expands further, 

while two vertices on the right part of the cavity merge into a bigger vertex. Therefore, at low 

value of 0.1Da = , the conduction dominated flow and heat transfer phenomenon preponderates 

even for higher to 510Ra = . The values of   inside the enclosure are seen to be lower at low 

values of Da  regardless of Ra implicating decay of the flow rate. This is because at low values 

of Da  the fluid flow is constrained by the prevailing loosely inter-connected voids in the 

medium. However, the value of   is greater adjacent to the vertical walls for higher Ra 

compared to the case for low Ra since the buoyancy induced flow augments owing to higher 

Ra and is limited to the walls because of low Da . At higher Da (e.g. 200Da = ) vertices on 

the left as well as the right part of the cavity expand with increment in Ra . However, the 

expansion is less compared to the case with 0.1Da =  (Fig. 3). At lower 310Ra = , the fluid flow 

is induced by the weak buoyant force represented by a small magnitude of dimensionless 

stream function. When the ellipse is at an oblique position in the middle of the annulus, CCW 

and CW rotations are developed on the left and right directions of hot ellipse, respectively. 

Further, the velocity of nanofluid is higher on the left side compared to that on right side. This 

is due to the free motion of the nanofluid at the left side of the ellipse. With the increment of 

velocity of nanoliquid and Ra, convection will be the major contributor to the resulting heat 

transfer. The stream lines become denser at the upper layer and adjacent to the top wall.  
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         The same trend is envisaged in the figure 3 with increment of Da ( )200Da = . It should 

be noted that in consideration of eq. (3), the resistive force due to the existence of porous 

medium resulted in reduction of flow velocity. Further, for 310Ra = , the growth of Da

( )200Da =  and the corresponding diminutive velocity causes heat transfer chiefly through 

conduction. In addition, the contours of dimensionless stream-functions (as seen in the figure) 

at 310Ra = and 200Da = , will be elliptical lines parallel to the main rigid body. At higher 

values of Ra , the magnitude of  upsurges implying higher velocity. At higher Ra , the 

isothermal lines become less dense associated with incremented Da as seen in the region of 

the cavity concern (see Fig 3). Growth of Ra enables isotherm contours to move to the top 

layers of nanofluid. With the growth of Ra  and velocity and the corresponding enhanced 

convection part, isothermal lines rotate towards the region above the cavity. 

Fig. 4 depicts the distribution of streamlines and isotherms for diverse aspect ratios of 

the elliptical heater at lower 310Ra = . In other words, alteration in aspect ratio of elliptical 

heater has a notable impact on the heat transfer features at the enclosure walls and the cylinder 

surfaces. Figure 4 shows that the streamlines and parallel isotherms spanning the entire cavity 

exhibit a symmetric pattern about the longer diameter of the ellipse. Such streamline 

distribution is featured by two vertices which are developed on the right and left portions of 

the cavity. As the aspect ratio of the elliptical heater rises ( 0.3AR = to 0.4AR = ), the max

decreases from 8.62994 to 7.46634 indicating the diminution of the velocity of nanofluid. With 

further increase of aspect ratio (i.e., 0.4AR = to 0.5AR = ), the intensity of streamlines max

decreases from 7.46634 to 6.20732, imparting further decline of the nanofluid velocity. 

Moreover, with increase in aspect ratio AR isotherm lines become denser and get closer to 

each other as observed in the cavity region. This can be explained by noting that that the space 

amongst the top wall of the cavity and the elliptical heater diminishes (Fig. 4). From Fig.4 it is 

also seen that at 310Ra = , with increment in AR  (from 0.3AR = to 0.4AR = ) vertex on the left 

part of the enclosure shrinks while the vertex on the right part remains unchanged. With further 

increase in AR (e.g. at higher 0.5AR = ) the vertex on the left part shrinks while that on the 

right part segregate into different vertices of different sizes.  

At higher Ra , i.e. at 410Ra = , augmentation of AR enables the flow and thermal 

structures to follow the same trend as the case with lower Ra ( )310Ra =  (see Fig.5). The 

decay of streamlines is infered from max values as 27.8342, 27.4855 and 26.1772. Further, 
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isotherms become less dense due to space reduction with gradual increment of AR . However, 

at larger value of 410Ra = , isotherms in the form of larger contours rotate towards the region 

above the cavity in the presence of porous medium. Also, at fixed AR , for instance at 0.3AR =

, increment in Ra ( 310Ra = to 410Ra = ) strengthens the stream function 

( )max max8.62994 27.8342to = = indicating enhancement of velocity of nanofluid. At 

higher Ra , i.e., 410Ra = , increment of AR leads to the shrinkage of the vertex on the left part 

of the enclosure while that on the right part increases at 0.4AR = and decreases at 0.5AR = . 

With further increase in Ra , i.e. at higher 510Ra = , the symmetric pattern of streamlines seem 

to augment at a greater magnitude ( )max max. ., 27.8342 72.5451i e to = = indicating further 

enhancement of velocity of nanofluid. Also, isotherms uplift in the shape of greater symmetric 

contours due to increment in Ra (Fig.6). Here the resistive force due to the prevailing porous 

medium, considering the convection term, leads to symmetric isotherm contours. 

 With augmented Ra , i.e., at 510Ra = , increment in aspect ratio AR results in the 

decline of stream function. The decremented value of max are found to be 72.5451, 61.2719, 

57.1238. This means that the velocity of nanofluid gets undermined. Further, at higher 510Ra =

, increase in AR leads to an ascending trend of isothermal lines in the form of asymmetric 

closed contours since the impact of convection ascends (Fig.6). It is interesting to note here 

that as Ra grows, isotherms in the upper surface of the elliptical heater have been concentrated 

less intensely compared to those in the bottom portion of the elliptical heater. This is because 

the gap among the upper surface of the elliptical heater and the upper wall of the cavity where 

the convective heat transfer enrooted upsurges. At higher 510Ra = , increase in AR leads to 

expansion of vertex on the left part of the cavity while the vertex on the right part shrinks. 

 

4.2 The influences of active parameters on Nusselt number 

Fig. 7 demonstrates Nuloc profiles for diverse amounts of Ra (Ra=103,104,105) and Da 

(Da=0.1,100) for aspect ratios 0.3,0.4,0.5AR = associated with spherical nanoparticles. To 

analyze isothermal lines, we should investigate the shapes linked to Nuloc. We start the analysis 

of Nu at 0.1Da = and 310Ra = . Invoking the isothermal lines illustrated in Fig.3 at midpoint 

of the right wall ( 0s = ), the upward movement causes the temperature gradient to fall and 

finally becomes insignificant at the top corner. Hence, Nu diminishes and finally vanishes at 

0.125s =  (the top corner). When isotherms rout the top wall and progress towards the left part 
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of the enclosure, they coalesce and become denser. Consequently, the temperature gradient and 

therefore the Nusselt number upsurge. 

When we progress from the zone above the left outer wall to the bottom, first isotherm 

contours become denser indicating augmentation of Nusselt number and gradient. Near the 

midpoint of the wall, temperature gradient as well as Nusselt number decline. After overcoming 

the midpoint and going downwards, isotherm contours become denser another time and Nusselt 

number augments. At the end of the left wall, Nusselt number becomes zero, considering 

temperature gradient and zero velocity of fluid. Clearly, at the starting of lower outer wall, 

isotherm contours become denser, and thus, Nusselt number uplifts, but next, they acquire some 

distance and Nusselt number belittles and vanishes another time, at the bottom and right 

corners.  

Temperature gradient uplifts from the lower corner to the middle part of the right outer 

wall, and so Nusselt number enhances. We now consider isotherm contours of fig. 3 when

410Ra = . In this case, Nu and temperature gradient find ascending trend while progressing 

from the center of right outer wall to the upper corner, where Nu and gradient experience a 

significant decay. Highly dense isotherm contours at the upper outer wall attain the utmost 

value at the center of the wall leading to the utmost Nu at the center of the top wall. The upper 

left corner finds the descending trend of Nu due to fall in temperature gradient. While 

progressing from the top of left outer wall towards bottom of it, initially temperature gradient 

and then Nusselt attains a very high value. Later on, Nu decreases gradually and finally 

becomes zero in downward movement to the lower left corner. As Ra augments, isotherm 

contours progress towards the upper segment, insignificant temperature gradient and least Nu

have been recorded at the lower wall for 410Ra = . Further, Nu  attains an ascending trend 

following upward motion from the bottom to the center segment of the right wall. Similar trend 

is visualized for Nusselt number at 0.1Da = and 510Ra = , but extremely high value is attained 

for temperature gradient at the upper outer wall near the midpoint and afterwards it decays 

rapidly. This is the basic cause for the conical shape of Nu  at the upper wall. As analyzed 

earlier, temperature gradient falls more significantly and attains zero value at the lower cold 

wall for 510Ra = where isotherm contours progress towards the zone above the enclosure. 

We now analyze Nu for 100Da =  and 310Ra = . Consider the isothermal lines of Fig. 

3 associated with 100Da = and 310Ra = where the isotherm contours at the center of the 

enclosure is denser than those of other zones and accordingly ( )
max

Nu is attained nearly at the 
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middle of it. Further, the Lorentz force associated with the low velocity and convection term is 

responsible for the symmetry of isotherm contours thereby representing similar trends at the 

walls. When 100Da = and 310Ra = , the number of isotherm contours increases at the top wall 

and becomes maximum at the middle of this wall. The shape of isothermal lines is parabolic at 

the left wall and within the top zone. Such lines contrast each other at the two sides of centre. 

Thus, Nuloc possesses two relative utmost points at the left wall. Isotherm contours and 

accordingly the trend of Nusselt is appreciable for 100Da =  and 510Ra = . 

Having a close look at all parts of Fig. 7, considering the density of isotherm contours 

at the top outer wall, we observe that local ( )
max

Nu is attained at the upper wall. This density 

gets augmented due to increment in Ra ( )3 4 510 ,10 ,10Ra = thereby Nu upsurges at the top 

outer wall. On the other hand, isotherm contours progress to the zone above the enclosure 

thereby declining Nusselt at the lower outer wall. Because of increment in AR , Nu upsurges 

in the range 0 0.025s  . Here, Nu  increases sharply and attains ( )
max

Nu at 0.25s = . In this 

case, the thermal gradient over the bottom surface of elliptical cylinder augments relatively. 

With increment in AR , Nu decreases in 0.125 0.375s  . Further, Nu decreases in

0.375 0.625s  compared to that in 0.125 0.375s  . When 0.375 0.625s  , Nu

escalates with increment in AR . Also, Nu value decreases in 0.625 0.875s  compared to 

its value in 0.375 0.625s  but with the same increasing trend of Nu is due to increment in

AR . Under this situation, the distance between the bottom wall of cavity and elliptical cylinder 

diminishes.     

         It is essential to note that Nu value again rises suddenly in 0.875 1s 

compared to the previous range 0.625 0.875s  . At 310Ra = , increment in Da ( 0.1Da = to

100Da = ), Nu value enhances and the maximum augmentation of HTR is accomplished. 

When Ra increases ( )3 410 10Ra toRa= = , heat transfer has been drastically reduced in the 

range 0.375 0.625s  , 0.625 0.875s  and 0.875 1s  . This is the influence of increment 

in Ra . Such influence remains unchanged when 100Da = .  Increment in AR

( )0.3,0.4,0.5AR = uplifts heat transfer, but in different magnitudes over different intervals of 

s . Also, when Da goes up ( 0.1Da = to 100Da = ), at 410Ra = , heat transfer rate gets slightly 

augmented in 0.125 0.375s  and remains the same over other intervals. When Ra further 

increases ( )4 510 10Ra to= , Nu value augments except for the interval 0.625 0.875s  where 
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it declines in both cases of 0.1Da = and 100Da = due to conduction dominated flow. However, 

at 510Ra = , increase in Da ( 0.1Da = to 100Da = ) uplifts Nu  value in the range of

0.125 0.375s  and maintains the same Nu value otherwise. 

Fig. 8 shows the average Nu for different amounts of Ra , Da and when 0.3AR = and

3m = . It is visualized from the figure that at a certain amount of Ra , increment in leads to 

uplift in the average Nu . Also, at fixed amount of , increment in Ra causes the average Nu  

to grow. Further, at fixed value of Ra , rise in Da enhances average Nu . Similar trend of 

average Nu is envisaged at fixed Da with increasing values of . Lastly, at fixed , increment 

in Da cause the average Nu  to grow. At a certain amount of Da , rise in yields in 

augmentation of average Nu . aveNu for various values of ,Ra Daand  when 0.4AR = and 

3m = is shown in Fig.9. It is seen that at certain value of Ra , increment in and Da leads to 

the growth of average Nu . Also, at certain value of , increment in Da shows the same trend. 

At fixed  or Da , increment in Ra leads to the uplift of aveNu . Further, at a given Da  rise in

causes an escalation of aveNu . Fig. 10 conveys aveNu for diverse values of ,Ra Daand  when 

0.3AR = and 3m = . It is obvious that at fixed Ra , increment in  and Da augments the value 

of aveNu . Furthermore, for certain values of , increment in Da produces the growth of aveNu . 

Taking into account the graphs of Figs. 8, 9 and 10, for each value of ,Ra Daand , aveNu can 

be determined by interpolation. 

Fig.11 reveals the impact of porous medium on the heat transfer in terms of aveNu for 

different aspect ratios ( )0.3,0.4,0.5AR = against different Ra  for 0.1Da = and 100Da =  

separately. At a specified value of Ra , increment in AR leads to growth of aveNu irrespective 

of Da ( )0.1 100Da or Da= = . Same ascending trend of aveNu is caused by the growth of Da

at certain Ra . The maximum rate of heat transfer in nanoliquid is ( )
max

2.6aveNu = for spherical 

nanoparticles ( )3m = for both 0.1Da = and 100Da = . 

Finally, we acquire the correlation for the aveNu in terms of effective parameters of the 

current work which is expressed as follows: 
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for AR=0.3: 
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for AR=0.5: 
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The R-Squared for these correlations are equal 0.9635, 0.9573 and 0.9655, respectively. It is 

worth mentionting that Response Surface Method (RSM) has been applied for extraction of 

correlation’s average Nusselt number. The connection between a response variable and 

independent variables can be recognized by RSM. Further, it can be used as a tool to lessen the 

number of experiments which causes both time and costs to reduce [56-58]. 

4. Conclusion 

In this analysis, natural convection of Cu-H2O nanoliquid in a porous annulus between an 

inclined elliptical cylinder and a square enclosure was investigated. The main concluding 

remarks of the current study are as follows: 

• At certain aspect ratio AR, increment in Rayleigh number Ra augments the stream 

functions thereby yielding greater velocity of nanofluids. 

• As the AR of the elliptical cylinder grows, max decays indicating the diminution of 

the velocity of the nanofluid.  
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• For certain volume fraction  or Darcy number Da , rise in Ra leads to the uplift of 

average Nu while at certain Ra, increment in and Da resulted in the growth of average

Nu .  

• At certain Ra , larger AR leads to augmentation of aveNu  and therefore uplifts heat 

transfer irrespective of Da .  

• At given Da, rise in  upsurges aveNu . 
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Table 1: Values of shape factor for diverse nanoparticle shapes 

[32, 53] 

Particle Shapes Spherical Cylinder Platelet 

m 3 4.8 5.7 

 

Table 2: Thermo-physical features of H2O and Cu [41] 

 ( )3/kg m  ( )/  pC J kg K  ( )/  k W m K  

Cu 8933 385 401 

H2O 997.1 4179 0.6 

 

 

Table 3: Influence of grid size on Nuavg for Ra=105, Da=200, and AR=0.5. 

Grid dimension Nuavg 

31×141 2.8677 

41×211 2.8253 

51×261 2.7652 

61×361 2.7630 
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Table 4: Influence of m on Nuavg for Da=100. 

Ra m Nuave. 

103 3 0.745366 

 4.8 0.767717 

 5.7 0.778838 

104 3 1.315095 

 4.8 1.344163 

 5.7 1.358467 

105 3 2.621575 

 4.8 2.682951 

 5.7 2.713270 
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(a) (b) 
  

Fig. 1. (a)Physical model and coordinate system (b) grid distribution 
 

 

 

  
  

a) Current work b) Kim et al. [49] 
  

Fig. 2. Comparison between the a) current work and b) Kim et al. [49] at Ra=105 
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Fig. 3. Streamlines and isotherms for different values of Ra and Da when 2% = , m=3 and AR=0.5 
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AR=0.3 AR=0.4 AR=0.5 
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Fig. 4. Streamlines and isotherms for different values of AR when Ra=103, Da=100, 2% =  and m=3. 
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Fig. 5. Streamlines and isotherms for different values of AR when Ra=104, Da=100, 2% =  and m=3. 
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Fig. 6. Streamlines and isotherms for different values of AR when Ra=105, Da=100, 2% =  and m=3. 
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Fig. 7. Local Nusselt number (Nuloc.) for different values of Ra, Da and AR when 2% =  and m=3 
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Fig. 8. Average Nusselt number (Nuave.) for different values of Ra, Da and  when AR=0.5 and m=3. 
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Fig. 9. Average Nusselt number (Nuave.) for different values of Ra, Da and  when AR=0.4 and m=3. 
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Fig. 10. Average Nusselt number (Nuave.) for different values of Ra, Da and  when AR=0.3 and m=3. 
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Da = 0.1 Da = 100 

  
  

Fig. 11. Average Nusselt number (Nuave.) for different values of AR when m=3 and 2% = . 
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