13 research outputs found

    Radio and optical intra-day variability observations of five blazars

    Full text link
    We carried out a pilot campaign of radio and optical band intra-day variability (IDV) observations of five blazars (3C66A, S5 0716+714, OJ287, B0925+504, and BL Lacertae) on December 18--21, 2015 by using the radio telescope in Effelsberg (Germany) and several optical telescopes in Asia, Europe, and America. After calibration, the light curves from both 5 GHz radio band and the optical R band were obtained, although the data were not smoothly sampled over the sampling period of about four days. We tentatively analyse the amplitudes and time scales of the variabilities, and any possible periodicity. The blazars vary significantly in the radio (except 3C66A and BL Lacertae with only marginal variations) and optical bands on intra- and inter-day time scales, and the source B0925+504 exhibits a strong quasi-periodic radio variability. No significant correlation between the radio- and optical-band variability appears in the five sources, which we attribute to the radio IDV being dominated by interstellar scintillation whereas the optical variability comes from the source itself. However, the radio- and optical-band variations appear to be weakly correlated in some sources and should be investigated based on well-sampled data from future observations.Comment: 6 pages, 6 figures, accepted by MNRA

    Primary Black Hole Spin in OJ 287 as Determined by the General Relativity Centenary Flare

    Get PDF
    OJ 287 is a quasi-periodic quasar with roughly 12 year optical cycles. It displays prominent outbursts that are predictable in a binary black hole model. The model predicted a major optical outburst in 2015 December. We found that the outburst did occur within the expected time range, peaking on 2015 December 5 at magnitude 12.9 in the optical R -band. Based on Swift /XRT satellite measurements and optical polarization data, we find that it included a major thermal component. Its timing provides an accurate estimate for the spin of the primary black hole, ##IMG## [http://ej.iop.org/images/2041-8205/819/2/L37/apjl523055ieqn1.gif] i=0.313pm0.01i =0.313pm 0.01 . The present outburst also confirms the established general relativistic properties of the system such as the loss of orbital energy to gravitational radiation at the 2% accuracy level, and it opens up the possibility of testing the black hole no-hair theorem with 10% accuracy during the present decade.Peer reviewe

    A Search for QPOs in the Blazar OJ287: Preliminary Results from the 2015/2016 Observing Campaign

    Get PDF
    We analyse the light curve in the R band of the blazar OJ287, gathered during the 2015/2016 observing season. We did a search for quasi-periodic oscillations (QPOs) using several methods over a wide range of timescales. No statistically significant periods were found in the high-frequency domain both in the ground-based data and in Kepler observations. In the longer-period domain, the Lomb–Scargle periodogram revealed several peaks above the 99% significance level. The longest one—about 95 days—corresponds to the innermost stable circular orbit (ISCO) period of the more massive black hole. The 43-day period could be an alias, or it can be attributed to accretion in the form of a two-armed spiral wave.Peer reviewe

    Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare : Improved Orbital Parameters

    Get PDF
    Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole (BBH) central engine of blazar OJ 287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ 287. We develop an approach that incorporates this effect into the BBH model for OJ 287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the BBH central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ 287's central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole "no-hair theorem" at the 10% level.Peer reviewe

    Another Shipment of Six Short-Period Giant Planets from TESS

    Get PDF
    We present the discovery and characterization of six short-period, transiting giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program (TFOP) Working Group, we have determined that the planets are Jovian-sized (RP_{P} = 1.00-1.45 RJ_{J}), have masses ranging from 0.92 to 5.35 MJ_{J}, and orbit F, G, and K stars (4753 << Teff_{eff} << 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days, ee = 0.220±0.0530.220\pm0.053), TOI-2145 b (P = 10.261 days, ee = 0.1820.049+0.0390.182^{+0.039}_{-0.049}), and TOI-2497 b (P = 10.656 days, ee = 0.1960.053+0.0590.196^{+0.059}_{-0.053}). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 << log\log g <<4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; 5.350.35+0.325.35^{+0.32}_{-0.35} MJ_{\rm J} (TOI-2145 b) and 5.21±0.525.21\pm0.52 MJ_{\rm J} (TOI-2497 b). These six new discoveries contribute to the larger community effort to use {\it TESS} to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA

    V392 Persei: a γ-ray bright nova eruption from a known dwarf nova

    Get PDF
    V392 Persei is a known dwarf nova (DN) that underwent a classical nova eruption in 2018. Here we report ground-based optical, Swift UV and X-ray, and Fermi-LAT γ-ray observations following the eruption for almost three years. V392 Per is one of the fastest evolving novae yet observed, with a t2 decline time of 2 days. Early spectra present evidence for multiple and interacting mass ejections, with the associated shocks driving both the γ-ray and early optical luminosity. V392 Per entered Sun-constraint within days of eruption. Upon exit, the nova had evolved to the nebular phase, and we saw the tail of the super-soft X-ray phase. Subsequent optical emission captured the fading ejecta alongside a persistent narrow line emission spectrum from the accretion disk. Ongoing hard X-ray emission is characteristic of a standing accretion shock in an intermediate polar. Analysis of the optical data reveals an orbital period of 3.230 ± 0.003 days, but we see no evidence for a white dwarf (WD) spin period. The optical and X-ray data suggest a high mass WD, the pre-nova spectral energy distribution (SED) indicates an evolved donor, and the post-nova SED points to a high mass accretion rate. Following eruption, the system has remained in a nova-like high mass transfer state, rather than returning to the pre-nova DN low mass transfer configuration. We suggest that this high state is driven by irradiation of the donor by the nova eruption. In many ways, V392 Per shows similarity to the well-studied nova and DN GK Persei

    A Search for QPOs in the Blazar OJ287: Preliminary Results from the 2015/2016 Observing Campaign

    Get PDF
    We analyse the light curve in the R band of the blazar OJ287, gathered during the 2015/2016 observing season. We did a search for quasi-periodic oscillations (QPOs) using several methods over a wide range of timescales. No statistically significant periods were found in the high-frequency domain both in the ground-based data and in Kepler observations. In the longer-period domain, the Lomb–Scargle periodogram revealed several peaks above the 99% significance level. The longest one—about 95 days—corresponds to the innermost stable circular orbit (ISCO) period of the more massive black hole. The 43-day period could be an alias, or it can be attributed to accretion in the form of a two-armed spiral wave

    Radio and optical intra-day variability observations of five blazars

    No full text
    We carried out a pilot campaign of radio and optical band intra-day variability (IDV) observations of five blazars (3C66A, S5 0716+714, OJ287, B0925+504 and BL Lacertae) on 2015 December 18-21 by using the radio telescope in Effelsberg (Germany) and several optical telescopes in Asia, Europe and America. After calibration, the light curves from both 5 GHz radio band and the optical R band were obtained, although the data were not smoothly sampled over the sampling period of about four days. We tentatively analyse the amplitudes and time-scales of the variabilities, and any possible periodicity. The blazars vary significantly in the radio (except 3C66A and BL Lacertae with only marginal variations) and optical bands on intra- and inter-day time-scales, and the source B0925+504 exhibits a strong quasi-periodic radio variability. No significant correlation between the radio- and optical-band variability appears in the five sources, which we attribute to the radio IDV being dominated by interstellar scintillation whereas the optical variability comes from the source itself. However, the radioand optical-band variations appear to be weakly correlated in some sources and should be investigated based on well-sampled data from future observations. © 2017 The Authors
    corecore