403 research outputs found

    O<sub>2</sub> photoabsorption in the 40 950–41 300 cm<sup>−1</sup> region: New Herzberg bands, new absorption lines, and improved spectroscopic data

    Get PDF
    The technique of cavity ring‐down (CRD) spectroscopy is particularly useful for measuring absorptions of very weak optical transitions. We have in this manner investigated the 40 950–41 300 cm−1 region in O2, where only absorption in the O2(A 3Σ+u–X 3Σ−g) 11‐0 band had been previously identified. Five new bands have been discovered in this range—the A′ 3Δu–X 3Σ−g 12‐0 and 13‐0 bands, the c 1Σ−u–X 3Σ−g 17‐0 and 18‐0 bands, and the A 3Σ+u−X 3Σ−g 12‐0 band. The origins of the F1 and F2 components of the latter lie only 7 cm−1 below the lowest dissociation limit, and 15 lines have been identified. No F3 levels were observed; apparently all are above the dissociation limit. The high instrumental sensitivity of the CRD technique has allowed observation of weak lines of the A–X 11‐0 band, and 12 of the 13 branches have been identified and their intensities measured. A very low upper limit has been set on the intensity of the thirteenth branch, Q13. We find 107 unidentified lines in the region, the stronger ones (19) lying in the vicinity of lines of the A–X 11‐0 band. The weaker ones (88) are spread throughout the spectral region, up to and even beyond the O2dissociation limit, and probably have their origin in transitions to very weakly bound O2 states, which may have atmospheric significance. These weaker lines have intensities that are typically 1%–5% of the strong A–X 11‐0 band lines

    Final State Charge Exchange Interactions in the 12C(e,ep)^{12}C(e,e'p) Reaction

    Get PDF
    The 12C(e,ep)^{12}C(e,e'p) reaction is analyzed in a model which explicitly includes final state interactions due to the coupling of the proton and neutron emission channels. We find that the effects of the final state interactions due to charge exchange reactions are important to get a good description of the symmetry properties of the recently measured Mainz spectral functions. We discuss the possible role the off-shell effects may play for the correct interpretation of spectral functions at large positive missing momenta.Comment: 9 pages Revtex, 4 figure

    The off-shell electromagnetic form factors of pions and kaons in chiral perturbation theory

    Full text link
    The off-shell electromagnetic vertex of a (pseudo-) scalar particle contains, in general, two form factors F and G which depend, in addition to the squared momentum transfer, on the invariant masses associated with the initial and final legs of the vertex. Chiral perturbation theory to one loop is used to calculate the off-shell form factors of pions and kaons. The formalism of Gasser and Leutwyler, which was previously used to calculate the on-shell limit of the form factor F, is extended to accommodate the most general form for off-shell Green's functions in the pseudoscalar meson sector. We find that chiral symmetry predicts that the form factors F of the charged pions and kaons go off-shell in the same way, i.e., the off-shell slope at the real photon point is given by the same new phenomenological constant β1\beta_1. Furthermore, it is shown that at order p4p^4 the form factor F of the K0K^0 does not show any off-shell dependence. The form factors G are all related to the form factors F in the correct fashion as required by the Ward-Takahashi identity. Numerical results for different off-shell kinematics are presented.Comment: TRIUMF preprint TRI-PP-94-4, 25 pages in LaTeX + 10 figures (uufile'd, compressed PostScript file appended at end, hardcopy available from authors

    Final report of comprehensive testing program for concrete at elevated temperatures

    Get PDF
    The objective of this program was to define the variations in physical (thermal) and mechanical (strength) properties of limestone aggregate concrete and lightweight insulating concrete exposed to elevated temperatures that could occur as a result of a postulated large sodium spill in a lined LMFBR equipment cell. To meet this objective, five test series were conducted: (1) unconfined compression, (2) shear, (3) rebar bond, (4) sustained loading (creep), and (5) thermal properties. Mechanical property results are presented for concretes subjected to temperature up to 621{sup 0}C (1150{sup 0}F)

    Antiproton-nucleus electromagnetic annihilation as a way to access the proton timelike form factors

    Full text link
    Contrary to the reaction pbar + p --> e+ e- with a high momentum incident antiproton on a free target proton at rest, in which the invariant mass M of the (e+ e-) pair is necessarily much larger than the (pbar p) mass, in the reaction pbar + d --> n e+ e- the value of M can take values near or below the (pbar p) mass. In the antiproton-deuteron electromagnetic annihilation, this allows to access the proton electromagnetic form factors in the time-like region of q^2 near the (pbar p) threshold. We estimate the cross section dsigma(pbar +d --> e+ e- n)/dM for an antiproton beam momentum of 1.5 GeV/c. We find that near the (pbar p) threshold this cross section is about 1 pb/MeV. The case of heavy nuclei target is also discussed. Elements of experimental feasibility are presented for the process pbar + d --> n e+ e- in the context of the Panda project.Comment: 14 pages, 11 figures. submitted to EPJ

    Robust Entanglement in Atomic Systems via Lambda-Type Processes

    Get PDF
    It is shown that the system of two three-level atoms in Λ\Lambda configuration in a cavity can evolve to a long-lived maximum entangled state if the Stokes photons vanish from the cavity by means of either leakage or damping. The difference in evolution picture corresponding to the general model and effective model with two-photon process in two-level system is discussed.Comment: 10 pages, 3 figure

    Electromagnetic form factors of the bound nucleon

    Get PDF
    We calculate electromagnetic form factors of the proton bound in specified orbits for several closed shell nuclei. The quark structure of the nucleon and the shell structure of the finite nuclei are given by the QMC model. We find that orbital electromagnetic form factors of the bound nucleon deviate significantly from those of the free nucleon.Comment: 12 pages including 4 ps figure

    Electromagnetic form factor of the pion in the space- and time-like regions within the front-form dynamics

    Get PDF
    The pion electromagnetic form factor is calculated in the space- and time-like regions from -10 (GeV/c)2(GeV/c)^2 up to 10 (GeV/c)2(GeV/c)^2, within a front-form model. The dressed photon vertex where a photon decays in a quark-antiquark pair is depicted generalizing the vector meson dominance ansatz, by means of the vector meson vertex functions. An important feature of our model is the description of the on-mass-shell vertex functions in the valence sector, for the pion and the vector mesons, through the front-form wave functions obtained within a realistic quark model. The theoretical results show an excellent agreement with the data in the space-like region, while in the time-like region the description is quite encouraging.Comment: 9 pages + 4 figures. To appear in Phys. Lett.

    A Gauge Invariant Unitary Theory for Pion Photoproduction

    Get PDF
    A covariant, unitary and gauge invariant theory for pion photoproduction on a single nucleon is presented. To achieve gauge invariance at the operator level one needs to include both the πN\pi N and γπN\gamma\pi N thresholds. The final amplitude can be written in terms of a distorted wave in the final πN\pi N channel provided one includes additional diagrams to the standard Born term in which the photon is coupled to the final state pion and nucleon. These additional diagrams are required in order to satisfy gauge invariance.Comment: 4 pages, LaTeX, 1 figure as a separate uuencoded compressed tar fil

    Canonical Formulation of the Light-Front Gluodynamics and Quantization of the Non-Abelian Plane Waves

    Get PDF
    Without a gauge fixing, canonical variables for the light-front SU(2) gluodynamics are determined. The Gauss law is written in terms of the canonical variables. The system is qualified as a generalized dynamical system with first class constraints. Abeliazation is a specific feature of the formulation (most of the canonical variables transform nontrivially only under the action of an Abelian subgroup of the gauge transformations). At finite volume, a discrete spectrum of the light-front Hamiltonian P+P_+ is obtained in the sector of vanishing PP_-. We obtain, therefore, a quantized form of the classical solutions previously known as non-Abelian plane waves. Then, considering the infinite volume limit, we find that the presence of the mass gap depends on the way the infinite volume limit is taken, which may suggest the presence of different ``phases'' of the infinite volume theory. We also check that the formulation obtained is in accord with the standard perturbation theory if the latter is taken in the covariant gauges.Comment: REVTEX, 18 pages, version to appear in Phys. Rev.
    corecore