470 research outputs found

    Improved Control of Tuberculosis and Activation of Macrophages in Mice Lacking Protein Kinase R

    Get PDF
    Host factors that microbial pathogens exploit for their propagation are potential targets for therapeuic countermeasures. No host enzyme has been identified whose genetic absence benefits the intact mammalian host in vivo during infection with Mycobacterium tuberculosis (Mtb), the leading cause of death from bacterial infection. Here, we report that the dsRNA-dependent protein kinase (PKR) is such an enzyme. PKR-deficient mice contained fewer viable Mtb and showed less pulmonary pathology than wild type mice. We identified two potential mechanisms for the protective effect of PKR deficiency: increased apoptosis of macrophages in response to Mtb and enhanced activation of macrophages in response to IFN-gamma. The restraining effect of PKR on macrophage activation was explained by its mediation of a previously unrecognized ability of IFN-gamma to induce low levels of the macrophage deactivating factor interleukin 10 (IL10). These observations suggest that PKR inhibitors may prove useful as an adjunctive treatment for tuberculosis

    Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity

    Get PDF
    The present study examined the ability of human monocytes to produce reactive oxygen intermediates after a contact with tumour cells. Monocytes generated oxygen radicals, as measured by luminol-enhanced chemiluminescence and superoxide anion production, after stimulation with the tumour, but not with untransformed, cells. The use of specific oxygen radical scavengers and inhibitors, superoxide dismutase, catalase, dimethyl sulphoxide and deferoxamine as well as the myeloperoxidase inhibitor 4-aminobenzoic acid hydrazide, indicated that chemiluminescence was dependent on the production of superoxide anion and hydroxyl radical and the presence of myeloperoxidase. The tumour cell-induced chemiluminescent response of monocytes showed different kinetics from that seen after activation of monocytes with phorbol ester. These results indicate that human monocytes can be directly stimulated by tumour cells for reactive oxygen intermediate production. Spontaneous monocyte-mediated cytotoxicity towards cancer cells was inhibited by superoxide dismutase, catalase, deferoxamine and hydrazide, implicating the role of superoxide anion, hydrogen peroxide, hydroxyl radical and hypohalite. We wish to suggest that so-called ‘spontaneous’ tumoricidal capacity of freshly isolated human monocytes may in fact be an inducible event associated with generation of reactive oxygen intermediates and perhaps other toxic mediators, resulting from a contact of monocytes with tumour cells. © 1999 Cancer Research Campaig

    Selective Depletion of Eosinophils or Neutrophils in Mice Impacts the Efficiency of Apoptotic Cell Clearance in the Thymus

    Get PDF
    Developing thymocytes undergo a rigorous selection process to ensure that the mature T cell population expresses a T cell receptor (TCR) repertoire that can functionally interact with major histocompatibility complexes (MHC). Over 90% of thymocytes fail this selection process and die. A small number of macrophages within the thymus are responsible for clearing the large number of dying thymocytes that must be continuously cleared. We studied the capacity of thymic macrophages to clear apoptotic cells under acute circumstances. This was done by synchronously inducing cell death in the thymus and then monitoring the clearance of apoptotic thymocytes. Interestingly, acute cell death was shown to recruit large numbers of CD11b+ cells into the thymus. In the absence of a minor CSF-1 dependent population of macrophages, the recruitment of these CD11b+ cells into the thymus was greatly reduced and the clearance of apoptotic cells was disrupted. To assess a possible role for the CD11b+ cells in the clearance of apoptotic cells, we analyzed mice deficient for eosinophils and mice with defective trafficking of neutrophils. Failure to attract either eosinophils or neutrophils to the thymus resulted in the impaired clearance of apoptotic cells. These results suggested that there is crosstalk between cells of the innate immune system that is necessary for maximizing the efficiency of apoptotic cell removal

    Vaccines for the Leishmaniases: Proposals for a Research Agenda

    Get PDF
    The International Symposium on Leishmaniasis Vaccines, held in Olinda, Brazil, on March 9–11, 2009, congregated international experts who conduct research on vaccines against the leishmaniases. The questions that were raised during that meeting and the ensuing discussions are compiled in this report and may assist in guiding a research agenda. A group to further discussion on issues raised in this policy platform has been set up at http://groups.google.com/group/leishvaccines-l

    Pichinde virus induces microvascular endothelial cell permeability through the production of nitric oxide

    Get PDF
    This report is the first to demonstrate infection of human endothelial cells by Pichinde virus (PIC). PIC infection induces an upregulation of the inducible nitric oxide synthase gene; as well as an increase in detectable nitric oxide (NO). PIC induces an increase in permeability in endothelial cell monolayers which can be abrogated at all measured timepoints with the addition of a nitric oxide synthase inhibitor, indicating a role for NO in the alteration of endothelial barrier function. Because NO has shown antiviral activity against some viruses, viral titer was measured after addition of the NO synthase inhibitor and found to have no effect in altering virus load in infected EC. The NO synthase inhibition also has no effect on levels of activated caspases induced by PIC infection. Taken together, these data indicate NO production induced by Pichinde virus infection has a pathogenic effect on endothelial cell monolayer permeability

    Adjuvant interferon gamma in patients with drug – resistant pulmonary tuberculosis: a pilot study

    Get PDF
    BACKGROUND: Tuberculosis (TB) is increasing in the world and drug-resistant (DR) disease beckons new treatments. METHODS: To evaluate the action of interferon (IFN) gamma as immunoadjuvant to chemotherapy on pulmonary DR-TB patients, a pilot, open label clinical trial was carried out in the Cuban reference ward for the management of this disease. The eight subjects existing in the country at the moment received, as in-patients, 1 × 10(6 )IU of recombinant human IFN gamma intramuscularly, daily for one month and then three times per week up to 6 months as adjuvant to the indicated chemotherapy, according to their antibiograms and WHO guidelines. Sputum samples collection for direct smear observation and culture as well as routine clinical and thorax radiography assessments were done monthly. RESULTS: Sputum smears and cultures became negative for acid-fast-bacilli before three months of treatment in all patients. Lesion size was reduced at the end of 6 months treatment; the lesions disappeared in one case. Clinical improvement was also evident; body mass index increased in general. Interferon gamma was well tolerated. Few adverse events were registered, mostly mild; fever and arthralgias prevailed. CONCLUSIONS: These data suggest that IFN gamma is useful and well tolerated as adjunctive therapy in patients with DR-TB. Further controlled clinical trials are encouraged

    Allotransplanted Neurons Used to Repair Peripheral Nerve Injury Do Not Elicit Overt Immunogenicity

    Get PDF
    A major problem hindering the development of autograft alternatives for repairing peripheral nerve injuries is immunogenicity. We have previously shown successful regeneration in transected rat sciatic nerves using conduits filled with allogeneic dorsal root ganglion (DRG) cells without any immunosuppression. In this study, we re-examined the immunogenicity of our DRG neuron implanted conduits as a potential strategy to overcome transplant rejection. A biodegradable NeuraGen® tube was infused with pure DRG neurons or Schwann cells cultured from a rat strain differing from the host rats and used to repair 8 mm gaps in the sciatic nerve. We observed enhanced regeneration with allogeneic cells compared to empty conduits 16 weeks post-surgery, but morphological analyses suggest recovery comparable to the healthy nerves was not achieved. The degree of regeneration was indistinguishable between DRG and Schwann cell allografts although immunogenicity assessments revealed substantially increased presence of Interferon gamma (IFN-γ) in Schwann cell allografts compared to the DRG allografts by two weeks post-surgery. Macrophage infiltration of the regenerated nerve graft in the DRG group 16 weeks post-surgery was below the level of the empty conduit (0.56 fold change from NG; p<0.05) while the Schwann cell group revealed significantly higher counts (1.29 fold change from NG; p<0.001). Major histocompatibility complex I (MHC I) molecules were present in significantly increased levels in the DRG and Schwann cell allograft groups compared to the hollow NG conduit and the Sham healthy nerve. Our results confirmed previous studies that have reported Schwann cells as being immunogenic, likely due to MHC I expression. Nerve gap injuries are difficult to repair; our data suggest that DRG neurons are superior medium to implant inside conduit tubes due to reduced immunogenicity and represent a potential treatment strategy that could be preferable to the current gold standard of autologous nerve transplant

    Optimizing Preprocessing and Analysis Pipelines for Single-Subject fMRI: 2. Interactions with ICA, PCA, Task Contrast and Inter-Subject Heterogeneity

    Get PDF
    A variety of preprocessing techniques are available to correct subject-dependant artifacts in fMRI, caused by head motion and physiological noise. Although it has been established that the chosen preprocessing steps (or “pipeline”) may significantly affect fMRI results, it is not well understood how preprocessing choices interact with other parts of the fMRI experimental design. In this study, we examine how two experimental factors interact with preprocessing: between-subject heterogeneity, and strength of task contrast. Two levels of cognitive contrast were examined in an fMRI adaptation of the Trail-Making Test, with data from young, healthy adults. The importance of standard preprocessing with motion correction, physiological noise correction, motion parameter regression and temporal detrending were examined for the two task contrasts. We also tested subspace estimation using Principal Component Analysis (PCA), and Independent Component Analysis (ICA). Results were obtained for Penalized Discriminant Analysis, and model performance quantified with reproducibility (R) and prediction metrics (P). Simulation methods were also used to test for potential biases from individual-subject optimization. Our results demonstrate that (1) individual pipeline optimization is not significantly more biased than fixed preprocessing. In addition, (2) when applying a fixed pipeline across all subjects, the task contrast significantly affects pipeline performance; in particular, the effects of PCA and ICA models vary with contrast, and are not by themselves optimal preprocessing steps. Also, (3) selecting the optimal pipeline for each subject improves within-subject (P,R) and between-subject overlap, with the weaker cognitive contrast being more sensitive to pipeline optimization. These results demonstrate that sensitivity of fMRI results is influenced not only by preprocessing choices, but also by interactions with other experimental design factors. This paper outlines a quantitative procedure to denoise data that would otherwise be discarded due to artifact; this is particularly relevant for weak signal contrasts in single-subject, small-sample and clinical datasets

    Climate Change Meets the Law of the Horse

    Get PDF
    The climate change policy debate has only recently turned its full attention to adaptation - how to address the impacts of climate change we have already begun to experience and that will likely increase over time. Legal scholars have in turn begun to explore how the many different fields of law will and should respond. During this nascent period, one overarching question has gone unexamined: how will the legal system as a whole organize around climate change adaptation? Will a new distinct field of climate change adaptation law and policy emerge, or will legal institutions simply work away at the problem through unrelated, duly self-contained fields, as in the famous Law of the Horse? This Article is the first to examine that question comprehensively, to move beyond thinking about the law and climate change adaptation to consider the law of climate change adaptation. Part I of the Article lays out our methodological premises and approach. Using a model we call Stationarity Assessment, Part I explores how legal fields are structured and sustained based on assumptions about the variability of natural, social, and economic conditions, and how disruptions to that regime of variability can lead to the emergence of new fields of law and policy. Case studies of environmental law and environmental justice demonstrate the model’s predictive power for the formation of new distinct legal regimes. Part II applies the Stationarity Assessment model to the topic of climate change adaptation, using a case study of a hypothetical coastal region and the potential for climate change impacts to disrupt relevant legal doctrines and institutions. We find that most fields of law appear capable of adapting effectively to climate change. In other words, without some active intervention, we expect the law and policy of climate change adaptation to follow the path of the Law of the Horse - a collection of fields independently adapting to climate change - rather than organically coalescing into a new distinct field. Part III explores why, notwithstanding this conclusion, it may still be desirable to seek a different trajectory. Focusing on the likelihood of systemic adaptation decisions with perverse, harmful results, we identify the potential benefits offered by intervening to shape a new and distinct field of climate change adaptation law and policy. Part IV then identifies the contours of such a field, exploring the distinct purposes of reducing vulnerability, ensuring resiliency, and safeguarding equity. These features provide the normative policy components for a law of climate change adaptation that would be more than just a Law of the Horse. This new field would not replace or supplant any existing field, however, as environmental law did with regard to nuisance law, and it would not be dominated by substantive doctrine. Rather, like the field of environmental justice, this new legal regime would serve as a holistic overlay across other fields to ensure more efficient, effective, and just climate change adaptation solutions

    m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination

    Get PDF
    N6-methyladenosine (m6A) is the most common internal modification of eukaryotic messenger RNA (mRNA) and is decoded by YTH domain proteins1, 2, 3, 4, 5, 6, 7. The mammalian mRNA m6A methylosome is a complex of nuclear proteins that includes METTL3 (methyltransferase-like 3), METTL14, WTAP (Wilms tumour 1-associated protein) and KIAA1429. Drosophila has corresponding homologues named Ime4 and KAR4 (Inducer of meiosis 4 and Karyogamy protein 4), and Female-lethal (2)d (Fl(2)d) and Virilizer (Vir)8, 9, 10, 11, 12. In Drosophila, fl(2)d and vir are required for sex-dependent regulation of alternative splicing of the sex determination factor Sex lethal (Sxl)13. However, the functions of m6A in introns in the regulation of alternative splicing remain uncertain3. Here we show that m6A is absent in the mRNA of Drosophila lacking Ime4. In contrast to mouse and plant knockout models5, 7, 14, Drosophila Ime4-null mutants remain viable, though flightless, and show a sex bias towards maleness. This is because m6A is required for female-specific alternative splicing of Sxl, which determines female physiognomy, but also translationally represses male-specific lethal 2 (msl-2) to prevent dosage compensation in females. We further show that the m6A reader protein YT521-B decodes m6A in the sex-specifically spliced intron of Sxl, as its absence phenocopies Ime4 mutants. Loss of m6A also affects alternative splicing of additional genes, predominantly in the 5′ untranslated region, and has global effects on the expression of metabolic genes. The requirement of m6A and its reader YT521-B for female-specific Sxl alternative splicing reveals that this hitherto enigmatic mRNA modification constitutes an ancient and specific mechanism to adjust levels of gene expression
    corecore