44 research outputs found

    Pollination: A key event controlling the expression of genes related to phytohormone biosynthesis during grapevine berry formation

    Get PDF
    Berry formation is the process of ovary conversion into a functional fruit, and is characterized by abrupt changes in the content of several phytohormones, associated with pollination and fertilization. Much effort has been made in order to improve our understanding of berry development, particularly from veraison to post-harvest time. However, the period of berry formation has been poorly investigated, despite its importance. Phytohormones are involved in the control of fruit formation; hence it is important to understand the regulation of their content at this stage. Grapevine is an excellent fleshy-fruit plant model since its fruits have particularities that differentiate them from those of commonly studied organisms. For instance, berries are prepared to cope with stress by producing several antioxidants and they are non-climacteric fruits. Also its genome is fully sequenced, which allows to identify genes involved in developmental processes. In grapevine, no link has been established between pollination and phytohormone biosynthesis, until recently. Here we highlight relevant findings regarding pollination effect on gene expression related to phytohormone biosynthesis, and present results showing how quickly this effect is achieved

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia

    Get PDF
    NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD, but not Npm1cA/+;NrasG12D/+, progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+. During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML

    LIPAD (LRRK2/Luebeck International Parkinson's Disease) Study Protocol:Deep Phenotyping of an International Genetic Cohort

    Get PDF
    Background: Pathogenic variants in the Leucine-rich repeat kinase 2 (LRRK2) gene are the most common known monogenic cause of Parkinson's disease (PD). LRRK2-linked PD is clinically indistinguishable from idiopathic PD and inherited in an autosomal dominant fashion with reduced penetrance and variable expressivity that differ across ethnicities and geographic regions.Objective: To systematically assess clinical signs and symptoms including non-motor features, comorbidities, medication and environmental factors in PD patients, unaffected LRRK2 pathogenic variant carriers, and controls. A further focus is to enable the investigation of modifiers of penetrance and expressivity of LRRK2 pathogenic variants using genetic and environmental data.Methods: Eligible participants are invited for a personal or online examination which comprises completion of a detailed eCRF and collection of blood samples (to obtain DNA, RNA, serum/plasma, immune cells), urine as well as household dust. We plan to enroll 1,000 participants internationally: 300 with LRRK2-linked PD, 200 with LRRK2 pathogenic variants but without PD, 100 PD patients with pathogenic variants in the GBA or PRKN genes, 200 patients with idiopathic PD, and 200 healthy persons without pathogenic variants.Results: The eCRF consists of an investigator-rated (1 h) and a self-rated (1.5 h) part. The first part includes the Movement Disorder Society Unified Parkinson's Disease Rating, Hoehn &Yahr, and Schwab & England Scales, the Brief Smell Identification Test, and Montreal Cognitive Assessment. The self-rating part consists of a PD risk factor, food frequency, autonomic dysfunction, and quality of life questionnaires, the Pittsburgh Sleep Quality Inventory, and the Epworth Sleepiness as well as the Hospital Anxiety and Depression Scales. The first 15 centers have been initiated and the first 150 participants enrolled (as of March 25th, 2021).Conclusions: LIPAD is a large-scale international scientific effort focusing on deep phenotyping of LRRK2-linked PD and healthy pathogenic variant carriers, including the comparison with additional relatively frequent genetic forms of PD, with a future perspective to identify genetic and environmental modifiers of penetrance and expressivityClinical Trial Registration:ClinicalTrials.gov, NCT04214509

    Predicted basal metabolic rate and cancer risk in the European Prospective Investigation into Cancer and Nutrition

    Get PDF
    Emerging evidence suggests that a metabolic profile associated with obesity may be a more relevant risk factor for some cancers than adiposity per se. Basal metabolic rate (BMR) is an indicator of overall body metabolism and may be a proxy for the impact of a specific metabolic profile on cancer risk. Therefore, we investigated the association of predicted BMR with incidence of 13 obesity-related cancers in the European Prospective Investigation into Cancer and Nutrition (EPIC). BMR at baseline was calculated using the WHO/FAO/UNU equations and the relationships between BMR and cancer risk were investigated using multivariable Cox proportional hazards regression models. A total of 141,295 men and 317,613 women, with a mean follow-up of 14 years were included in the analysis. Overall, higher BMR was associated with a greater risk for most cancers that have been linked with obesity. However, among normal weight participants, higher BMR was associated with elevated risks of esophageal adenocarcinoma (hazard ratio per 1-standard deviation change in BMR [HR1-SD]: 2.46; 95% CI 1.20; 5.03) and distal colon cancer (HR1-SD: 1.33; 95% CI 1.001; 1.77) among men and with proximal colon (HR1-SD: 1.16; 95% CI 1.01; 1.35), pancreatic (HR1-SD: 1.37; 95% CI 1.13; 1.66), thyroid (HR1-SD: 1.65; 95% CI 1.33; 2.05), postmenopausal breast (HR1-SD: 1.17; 95% CI 1.11; 1.22) and endometrial (HR1-SD: 1.20; 95% CI 1.03; 1.40) cancers in women. These results indicate that higher BMR may be an indicator of a metabolic phenotype associated with risk of certain cancer types, and may be a useful predictor of cancer risk independent of body fatness

    Differential behavior within a grapevine cluster: decreased ethylene-related gene expression dependent on auxin transport is correlated with low abscission of first developed berries

    No full text
    In grapevine, fruit abscission is known to occur within the first two to three weeks after flowering, but the reason why some berries in a cluster persist and others abscise is not yet understood. Ethylene sensitivity modulates abscission in several fruit species, based on a mechanism where continuous polar auxin transport across the pedicel results in a decrease in ethylene perception, which prevents abscission. In grapevine, flowering takes about four to seven days in a single cluster, thus while some flowers are developing into berries, others are just starting to open. So, in this work it was assessed whether uneven flowering accounted for differences in berry abscission dependent on polar auxin transport and ethylene-related gene expression. For this, flowers that opened in a cluster were tagged daily, which allowed to separately analyze berries, regarding their ability to persist. It was found that berries derived from flowers that opened the day that flowering started - named as "first berries" - had lower abscission rate than berries derived from flowers that opened during the following days - named as "late berries". Use of radiolabeled auxin showed that "first berries" had higher polar auxin transport, correlated with lower ethylene content and lower ethylene-related transcript abundance than "late berries". When "first berries" were treated with a polar auxin transport inhibitor they showed higher ethylene-related transcript abundance and were more prone to abscise than control berries. This study provides new insights on fruit abscission control. Our results indicate that polar auxin transport sustains the ability of "first berries" to persist in the cluster during grapevine abscission and also suggest that this could be associated with changes in ethylene-related gene expression

    Photoperiod modifies the diurnal expression profile of VvPHYA and VvPHYB transcripts in field-grown grapevine leaves

    No full text
    Despite the crucial role that phytochromes (Phys) play in light perception and in the entrainment of the circadian clock to local time, the photoperiodic regulation of PHYA and PHYB gene expression has been poorly studied, especially in woody perennials. Here the dynamic of Vitis vinifera PHYA (VvPHYA) and PHYB (VvPHYB) transcript accumulation was studied in field-grown grapevine leaves throughout daily cycles under decreasing natural photoperiods. Given that in grapevine the entrance of buds into endodormancy (ED) is a photoperiod-driven process, increases in BR50 values, a parameter that measures the depth of dormancy in single bud cuttings assays was used to determine the critical daylength at which grapevine discriminates between long day (LD) and short day (SD) photoperiod. Therefore, we monitored the daily expression profile of VvPHYA and VvPHYB transcripts before, during and after the defined critical daylength. Results showed that under LD photoperiod (21 December, daylength 1
    corecore