102 research outputs found

    Generating milling tool paths for prismatic parts using genetic programming

    Get PDF
    AbstractThe automatic generation of milling tool paths traditionally relies on applying complex tool path generation algorithms to a geometric model of the desired part. For parts with unusual geometries or intricate intersections between sculpted surfaces, manual intervention is often required when normal tool path generation methods fail to produce efficient tool paths. In this paper, a simplified model of the machining process is used to create a domain-specific language that enables tool paths to be generated and optimised through an evolutionary process - formulated, in this case, as a genetic programming system. The driving force behind the optimisation is a fitness function that promotes tool paths whose result matches the desired part geometry and favours those that reach their goal in fewer steps. Consequently, the system is not reliant on tool path generation algorithms, but instead requires a description of the desired characteristics of a good solution, which can then be used to measure and evaluate the relative performance of the candidate solutions that are generated. The performance of the system is less sensitive to different geometries of the desired part and doesn’t require any additional rules to deal with changes to the initial stock (e.g. when rest roughing). The method is initially demonstrated on a number of simple test components and the genetic programming process is shown to positively influence the outcome. Further tests and extensions to the work are presented

    Manufacturing at double the speed

    Get PDF
    The speed of manufacturing processes today depends on a trade-off between the physical processes of production, the wider system that allows these processes to operate and the co-ordination of a supply chain in the pursuit of meeting customer needs. Could the speed of this activity be doubled? This paper explores this hypothetical question, starting with examination of a diverse set of case studies spanning the activities of manufacturing. This reveals that the constraints on increasing manufacturing speed have some common themes, and several of these are examined in more detail, to identify absolute limits to performance. The physical processes of production are constrained by factors such as machine stiffness, actuator acceleration, heat transfer and the delivery of fluids, and for each of these, a simplified model is used to analyse the gap between current and limiting performance. The wider systems of production require the co-ordination of resources and push at the limits of human biophysical and cognitive limits. Evidence about these is explored and related to current practice. Out of this discussion, five promising innovations are explored to show examples of how manufacturing speed is increasing ? with line arrays of point actuators, parallel tools, tailored application of precision, hybridisation and task taxonomies. The paper addresses a broad question which could be pursued by a wider community and in greater depth, but even this first examination suggests the possibility of unanticipated innovations in current manufacturing practices
    • …
    corecore