
 Barclay, J., Dhokia, V., & Nassehi, A. (2015). Generating milling tool paths
for prismatic parts using genetic programming. Procedia CIRP, 33, 490-495.
DOI: 10.1016/j.procir.2015.06.060

Publisher's PDF, also known as Version of record

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.procir.2015.06.060

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at
doi:10.1016/j.procir.2015.06.060. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

http://dx.doi.org/10.1016/j.procir.2015.06.060
http://research-information.bristol.ac.uk/en/publications/generating-milling-tool-paths-for-prismatic-parts-using-genetic-programming(12bf2581-44d7-4ab8-a065-aa0090239145).html
http://research-information.bristol.ac.uk/en/publications/generating-milling-tool-paths-for-prismatic-parts-using-genetic-programming(12bf2581-44d7-4ab8-a065-aa0090239145).html

Available online at www.sciencedirect.com

2212-8271 © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Selection and peer-review under responsibility of the International Scientific Committee of “9th CIRP ICME Conference”
doi: 10.1016/j.procir.2015.06.060

 Procedia CIRP 33 (2015) 490 – 495

ScienceDirect

9th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRP ICME ’14

Generating milling tool paths for prismatic parts using genetic programming

Jack Barclaya,*, Vimal Dhokiaa, Aydin Nassehia

aDepartment of Mechanical Engineering, University of Bath, Bath. BA2 7AY. UK.
∗ Corresponding author. Tel.: +44 1225 384049; E-mail address: j.barclay@bath.ac.uk

Abstract

The automatic generation of milling tool paths traditionally relies on applying complex tool path generation algorithms to a geometric model of the

desired part. For parts with unusual geometries or intricate intersections between sculpted surfaces, manual intervention is often required when

normal tool path generation methods fail to produce efficient tool paths. In this paper, a simplified model of the machining process is used to create

a domain-specific language that enables tool paths to be generated and optimised through an evolutionary process - formulated, in this case, as

a genetic programming system. The driving force behind the optimisation is a fitness function that promotes tool paths whose result matches

the desired part geometry and favours those that reach their goal in fewer steps. Consequently, the system is not reliant on tool path generation

algorithms, but instead requires a description of the desired characteristics of a good solution, which can then be used to measure and evaluate the

relative performance of the candidate solutions that are generated. The performance of the system is less sensitive to different geometries of the

desired part and doesn’t require any additional rules to deal with changes to the initial stock (e.g. when rest roughing). The method is initially

demonstrated on a number of simple test components and the genetic programming process is shown to positively influence the outcome. Further

tests and extensions to the work are presented.

c© 2014 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the International Scientific Committee of “9th CIRP ICME Conference”.

Keywords: Computer numerical control (CNC); Milling; Genetic programming

1. Introduction

Tool path generation is primarily thought of as a geometric

problem and many different methods have been developed and

iterated upon that aim to produce tool paths that exhibit particular

desired attributes. For example, iso-scallop machining uses

desired scallop height to influence machining strategy and high-

speed milling tool paths limit cutter engagement to allow for

higher feed rates and depths of cut. Deciding which method to

use is not always straight forward and often has to be made at

the start of the process when there isn’t much information to

help inform the decision. This leads to a lot of manual effort -

trying different methods and modifying parameters to check their

effects upon the attributes when trying to meet the specification.

This research looks upon tool path generation as an optimisation

problem and aims to create a system where design intent is the

focus and implementation specifics are handled automatically.

A simplified model for milling machining will be used to

reduce the search space of the optimisation problem. The work

piece is divided into layers and each layer discretised into a

square grid. Fig 1 shows how the desired product shape can be

represented as a shape built up from multiple small grid squares.

The cutting tool can then also be described as occupying a certain

square or number of squares at any one time.

Using this model, a tool path can be defined as the order of

squares visited on the grid, or the distinct movements required

to take that path. Using this model, the search space in which

the optimal series of cutting tool movements exist is reduced,

however, it is still too large to facilitate a deterministic develop-

ment of the optimal solution. This provides the motivation for

exploring evolutionary computation methods within this appli-

cation.

Many studies have been performed that look into the opti-

misation of machining parameters to improve cycle times, re-

duce costs, improve accuracy, and for a whole host of other

objectives [1–3]. A lot of these use genetic algorithms or other

evolutionary computation techniques to perform the optimisa-

tion [4–7], leading to an improved or optimal set of feed rates,

cutting speeds, tool engagement angles, depths of cut and more.

The actual tool path generation aspect was not considered in

these studies and they relied on traditional CAM generated or

manually written tool paths to accompany their efforts in opti-

mising cutting conditions.

Some studies do look at tool path optimisation issues, how-

ever, most are limited to models that have been reduced to im-

itate a travelling salesman (TSP) type problem [8–10]. These

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Selection and peer-review under responsibility of the International Scientifi c Committee of “9th CIRP ICME Conference”

491 Jack Barclay et al. / Procedia CIRP 33 (2015) 490 – 495

Fig. 1. The 3D work piece is simplified down into a series of 2D layers. Each layer is discretised into a grid, with the cutting area and desired shape being formed

from a combination of the resultant squares.

are relevant for some machining processes such as CNC laser

cutting [11] and in the optimisation of non-productive (or non-

cutting) time [12], where the aim is to reduce the required tool

path motion between a set of pre-defined points.

Agrawal et al. [13] used a genetic algorithm (GA) to min-

imise machining distance in iso-scallop machining of parametric

surfaces. They were using the GA to find the globally opti-

mal master cutting path from which the rest of the machining

passes were derived. More recently, another group looked at

multi-objective optimising of tool paths [14], where the trade-off

between cutting force, cycle time, and scallop height was exam-

ined and pareto-optimal solutions were found and presented.

2. The Principles of Genetic Programming

An evolutionary algorithm mimics the process of Darwinian

evolution through natural selection whereby ‘fitter’ individuals

are more likely to pass on their genetic material to the next

generation. Specific traits that contribute to the success of an

individual are more likely to be present in the population as itera-

tion through generations is continued. The process, as illustrated

by Fig. 2, is followed until an individual emerges that exhibits

performance above a given metric or until a maximum number

of generations is reached.

Tree-based Genetic Programming (GP) represents candidate

solutions with a tree structure that encodes all the logic and

information about the program. The internal nodes of the tree

are the functions of the program; operators that perform actions

using their arguments (child nodes). The leaf nodes are called

terminals and can be variables, random constants, or functions

that take no arguments (0-arity functions). The function set and

the terminal set are collectively known as the primitive set; they

are the building blocks that make up the programs that solve the

target problem.

2.1. Initial Population

Individuals are generated, by randomly selecting items from

the primitive set to fill out the tree. The initial population will

most likely consist of a large number of very poor solutions

to the problem, as they have been randomly created and have

not been through the progression and development of multiple

evolution cycles.

2.2. Fitness Evaluation

Each individual in the population is evaluated and tested for

their ability to solve the problem. A fitness score is given to each

individual depending on the extent at which they solve the ques-

tion asked of them, such that solutions can be compared and the

fittest individuals identified. Fitness evaluation is very problem

specific and depends upon the specifics of the application and

experiment.

2.3. Parent Selection

Before a genetic operator can be applied, the parent individ-

ual(s) must be selected. Selection is fitness-proportionate and

performed with replacement, meaning that an individual can be

selected multiple times to be a parent. Therefore, fitter individu-

als are more likely to have more chances to pass their successful

genetic material to the next generation, hopefully leading to

progression and growth in the average fitness of the population.

492 Jack Barclay et al. / Procedia CIRP 33 (2015) 490 – 495

Fig. 2. Flowchart of a genetic evolutionary procedure.

2.4. Genetic Operation

There are three main types of genetic operator: reproduction,

crossover, and mutation. Reproduction simply copies an indi-

vidual into the next generation. Crossover selects two parent

individuals and combines them to produce two new offspring.

For tree-based GP, a random node in each of the parent individu-

als is selected, and the sub-trees below this crossover point are

swapped to create two new offspring. The mutation operation

makes a small change to an individuals genotype - a node is

selected at random from the parent individual and the sub-tree

below this point is replaced with a newly generated sub-tree.

Mutation helps to introduce fresh genetic material to the popu-

lation, ensuring that the variety and diversity of individuals is

sustained. The type of operation used is selected proportion-

ately according to predetermined ratios. Crossover is the most

commonly applied operator; mutation is used relatively rarely.

2.5. Termination Criterion

After sufficient genetic operations to create a new population

of the desired size have been completed, a new generation is

initiated and the cycle of evaluation, selection, and breeding is

repeated. The process is continued until either an optimal solu-

tion is found, or the prescribed maximum number of generations

completed. Target fitness criteria can be set so that the cycle

will terminate when a ’good enough’ solution to the problem

has been found.

3. A Simplified Model of the Machining Process

The resolution of a CNC machine is the smallest achievable

change in the position of the tool. This reduces the positions

within space that the tool can occupy to a finite number and can

493 Jack Barclay et al. / Procedia CIRP 33 (2015) 490 – 495

Fig. 3. The grid size is determined by the highest common factor of the dimensions within the desired shape. In this example, that calculation results in a grid size of

2mm. The cutting tool size is determined by either the tightest internal radius specified (left), or the smallest gap between two parts of the product shape (right).

be visualised as a grid of squares that the tool can move between.

Resolutions of as low as 0.001-0.01 mm are common amongst

modern CNC milling machines, which even at the higher end of

that range equates to a grid size of 10000 x 10000 for a 100 mm

x 100 mm area. Despite the reduction to a finite number of tool

positions, the combination of squares when considering a routing

between one side of the grid to the other is effectively infinite.

In order to reduce the search space of the optimisation problem

to something practical, a simplified model of this machining

process is required. This is achieved by creating a model with a

reduced spacial resolution - i.e., a larger grid size. Within this

grid, the desired shape then can be specified by selecting which

squares the tool should and should not visit.

3.1. Grid Spacing and Cutting Tool Selection

There is a simple rule that can be followed in order to deter-

mine the optimal grid size for a given work piece; it should be

equal to the highest common factor of all the dimensions within

the desired product shape. This ensures that a grid overlay is

produced that will align with all the edges of the desired shape,

allowing an accurate definition of the target product to be built.

For cutting tool selection, one convention is to choose the

largest possible tool that will fit the job. A larger tool can

remove material faster than a smaller one could, thereby enabling

potential savings on machining time. The limitation on tool

diameter is usually either the size of the internal curves/arcs

of a part, or the smallest gap between two parts of the desired

product shape. For example, a 10 mm cutting tool can not cut

any curves with a radius tighter than 5 mm, nor can it fit through

a gap of less than 10 mm. If a smaller radius or gap is present in

the desired product shape, the 10 mm tool would not be suitable.

Fig. 3 illustrates the grid spacing and cutting tool selection

limitations. One key point to note is that the cutting tool may

be larger than a single grid square as the two limitations are

independent of each other. It will always be at least as big as the

grid spacing and within the context of this model can only be a

multiple of the grid size.

3.2. Tool Motion

With the work piece divided up into a discrete square grid,

the tool movements can now be defined within the problem

domain. From any single grid square, there are four permissible

moves; to any one of the four adjacent squares in the direction

of the machine axes (diagonal movements are prohibited within

this model). In order to try and influence the tool paths to

favour straight trajectories over many small turns, tool motion

was modelled as a single movement (forward one unit) and

two directional modifiers (turn left and turn right). Any tool

motion within the 2D discretised grid can be formulated using a

combination of these singular elements.

3.3. Limitations

By virtue of dividing the machining space into a grid of

squares with each being designated cut or don’t cut, the resultant

shapes will only consist of straight horizontal or vertical lines.

This makes it impossible to machine a perfect circle or curve

between two points, but just an approximation using the discrete

‘pixels’ of the system. As Fig. 4 illustrates, a higher resolution

grid will allow for a better approximation of the shape to be

made, however, this will come at the expense of complexity and

may be detrimental to the ability of the program to generate and

optimise good tool paths.

Fig. 4. When using a discrete grid model, the resultant shapes are made up

of small squares or ’pixels’. This means that true curves can’t be made, only

approximations to the desired shape. This effect can be lessened by reducing the

size of the grid, however, this increases complexity of the model and makes it

harder to generate good tool paths.

494 Jack Barclay et al. / Procedia CIRP 33 (2015) 490 – 495

Fig. 5. Geometry of 4 initial test cases and their combination into larger, more

complex case.

3.4. Mapping into the GP Domain

The terminal set components are the elements that make up

the tool motion. Alongside this, there is a function set that has

two functions that inform the structure of a program (progn2

and progn3) and two functions that allow the program to make

decisions based on its immediate surroundings (if-shape and if-

cut). The progn* functions take 2 and 3 arguments respectively

and will run those arguments in order. This introduces a form

of sub-routine where multiple commands can be evaluated one

after the other. Nested progn* functions will produce longer

sub-routines, where a longer length of commands can be run in

order. The if-shape function will check if the square immediately

in front of the tool (i.e., the square it would move to next) is part

of the desired product shape. If it is, the first argument will be

evaluated, and if not, the second one will. The if-cut function

does the same, but the check is for whether the square in front

has already been machined instead.

Every generation, each individual has their fitness measured.

This involves evaluating the program tree repeatedly until the

termination criteria are fulfilled - i.e all the desired grid squares

have been cut, or a prescribed maximum number of moves

has been reached. Listing 1 shows the Lisp code used in this

investigation. The fitness function itself uses parameters such

as the number of missed grid squares (those that it was trying to

cut but didn’t), the number of grid squares it cut that it shouldn’t

have, and a measure of relative tool path length (compared to

number of squares it had to cut).

4. Test Cases & Results

To begin with, four very simple test cases were designed to

test basic functionality of the algorithm. These simple 5 by 5

grid sections, as shown in Fig. 5, proved to be too simple and

it was found that near-optimal solutions were being generated

during initialisation of the first population.

Fig. 6. A plot of 100,000 randomly generated programs. This population has not

been directed towards an optimal solution and, as such, is just a random search

across the solution space.

Fig. 7. A plot of all the individuals evaluated throughout the GP run, with a

population size of 500 iterated through 200 generations. The plot shows quick

progression initially, with most of the work being done before 20,000 evaluations

(40 generations).

For the next step, all the previous 5 by 5 test cases were joined

together into a single 10 by 10 test piece. This increased the

complexity of the problem greatly and it was no longer trivial to

find near-optimal solutions. In fact, many runs wouldn’t even

find a solution that would cut all the desired squares. The model

of tool path movement was too general to consistently generate

valid tool paths that completed the entire cutting operation. This

results in a situation that is difficult for the fitness function

to cope with as the initial priority must be to find valid tool

paths that cut all the desired area, but then the priorities shift

towards optimising those valid solutions to make them more

efficient. Trying to perform both of these at the same time

is hard and selection of the fitness function parameters and

coefficients is a task that has little empirical evidence to help

with the decisions. Despite this, Figs. 6 and 7 show that the

GP optimisation was effective and actively directed the search

towards better solutions.

By analysing Fig. 7, it can be seen that the majority of the

work is being performed in the first 15 to 20 thousand evalua-

tions. The incremental trend towards the lower fitness values

495 Jack Barclay et al. / Procedia CIRP 33 (2015) 490 – 495

Listing 1. Common Lisp function for evaluating the fitness of an individual

1 ;; Fitness evaluation for individual programs
2 (defun evaluate-standard-fitness (program)
3 "Evaluates a single program (argument) and reports its
4 fitness, hits, and number of moves."
5 (let ((standardised-fitness 0)
6 (hits 0)
7 (counter-hits 0)
8 (moves-tally 0)
9 (squares-to-hit *number-of-squares-to-cut*))

10 (initialise)
11 (catch :terminate-fitness-evaluation
12 (dotimes (index *maximum-number-of-moves*)
13 (when (or (>= hits squares-to-hit)
14 (>= moves-tally *maximum-number-of-moves*))
15 (throw :terminate-fitness-evaluation
16 (values standardised-fitness hits)))
17 (eval program)
18 (setf hits *hits*)
19 (setf counter-hits *counter-hits*)
20 (setf moves-tally *moves*)
21 (setf standardised-fitness
22 (floor (* 1 (+ (* 30 (- squares-to-hit hits))
23 (* 50 counter-hits)
24 (* 50 (/ moves-tally squares-to-hit))))))
25 (values standardised-fitness hits)))))

(lower is better here) shows the process of active search. When

this progression halts, the population then transitions out of the

active search and back to a random search driven mainly by

mutation and repeated crossover. The lines or peaks that seem to

appear out of the plot at various fitness levels are where the best

solutions are broken into their component parts by crossover

during selection. At around the 60,000 evaluation mark a small

jump in the fittest program found occurs. Here we can see the

effect of this on the rest of the population - a line just above the

500 fitness mark seems to break down at this point, due to the

subtle difference between the previous fittest individuals and the

new fittest. In fact, it appears that the disturbance in this general

area appears slightly before the new fittest is found, perhaps

going on to contribute to its discovery soon after.

5. Conclusions

Traditional program generation methods use complex, intel-

ligent, algorithms to dictate the tool paths for a given product.

This paper has evaluated an alternative method where the indi-

vidual elements of tool motion are defined and a system created

that generates programs that use these to produce tool paths.

These programs are then optimised by telling the system how

to evaluate a given tool path for performance and allowing it to

emulate evolution through natural selection.

There has been some success for using GP to generate tool

paths for 2D milling. It has been shown to perform an active

search and responds to changes in the product shape without

problems. The method is compared to a random search algorithm

that only found better solutions by chance and the behaviour of

the population during evaluation was studied to identify emer-

gent behaviour patterns.

References

[1] Tandon, V., El-Mounayri, H., Kishawy, H.. Nc end milling optimization

using evolutionary computation. International Journal of Machine Tools

and Manufacture 2002;42(5):595–605.

[2] Tolouei-Rad, M., Bidhendi, I.. On the optimization of machining param-

eters for milling operations. International Journal of Machine Tools and

Manufacture 1997;37(1):1–16.

[3] Zain, A.M., Haron, H., Sharif, S.. Application of ga to optimize cutting

conditions for minimizing surface roughness in end milling machining

process. Expert Systems with Applications 2010;37(6):4650–4659.

[4] Rai, J.K., Brand, D., Slama, M., Xirouchakis, P.. Optimal selection of

cutting parameters in multi-tool milling operations using a genetic algorithm.

International Journal of Production Research 2011;49(10):3045–3068.

[5] Ganesan, H., Mohankumar, G., Ganesan, K., Kumar, K.R.. Optimization

of machining parameters in turning process using genetic algorithm and

particle swarm optimization with experimental verification. International

Journal of Engineering Science and Technology Vol 3 No 2 Feb 2011 2011;.

[6] Cus, F., Balic, J.. Optimization of cutting process by ga approach. Robotics

and Computer-Integrated Manufacturing 2003;19(1):113–121.

[7] Krimpenis, A., Vosniakos, G.C.. Rough milling optimisation for parts

with sculptured surfaces using genetic algorithms in a stackelberg game

2009;20(4):447–461.

[8] Narasimhan, M.V.. Optimization of the tool path in a robotic environment

2007;.

[9] Petunin, A.. Tools path optimization for cnc cutting machines. Vestnik

UGATU Systems Engineering and Information Technologies 2011;15(4

(44)):179–182.

[10] Medina-Rodriguez, N., Montiel-Ross, O., Sepulveda, R., Castillo, O..

Tool path optimization for computer numerical control machines based on

parallel aco. Engineering Letters 2012;20(1):101.

[11] Vaupotic, B., Kovacic, M., Ficko, M., Balic, J.. Concept of automatic

programming of nc machine for metal plate cutting by genetic algorithm

method. Journal of Achievements in Materials and Manufacturing Engi-

neering 2006;14(1-2).

[12] Gupta, A., Chandna, P., Tandon, P.. Hybrid genetic algorithm for mini-

mizing non productive machining time during 2.5 d milling. International

Journal of Engineering, Science and Technology 2011;3(1).

[13] Agrawal, R.K., Pratihar, D., Roy Choudhury, A.. Optimization of

CNC isoscallop free form surface machining using a genetic algorithm

2006;46(7):811–819.

[14] Manav, C., Bank, H.S., Lazoglu, I.. Intelligent toolpath selection via multi-

criteria optimization in complex sculptured surface milling 2013;24(2).

