51 research outputs found

    Assessing the coherence in biological and environmental drivers of young sea bass abundance across important estuarine nursery areas of the northern European sea bass stock

    Get PDF
    Year class strength is an important determinant of fish population size, but the drivers are often unknown. The northern stock of European sea bass (Dicentrarchus labrax) is an important target species for both commercial and recreational fisheries. Scientific assessments showed a rapid decline in spawning stock biomass from 2010-18 attributed to a combination of fishing mortality and poor year class strength. Recruitment to the adult stock is linked to the abundance and temporal dynamics of young bass in estuarine nursery areas, but little is known about the relative importance of environmental and biological drivers on the survival of these young life stages. In this study, we use Generalised Linear Models to attempt to identify important local environmental (sea surface temperature and river flow) and biological (chlorophyll-a concentration and predator abundance) drivers of young sea bass abundance. We focus on seven British and Irish estuarine areas that are important to the northern stock of European sea bass. In four English estuarine areas there were good model fits to the abundance of young sea bass, but predictors differed amongst these suggesting that drivers of abundance may differ among individual nursery areas. This was further demonstrated by poor fits of models generated for English estuaries to interannual patterns of abundance in the Irish nursery areas tested. The differences found in the most important abundance drivers amongst areas highlight the complex and differing dynamics between estuaries. If the number of young bass that eventually join the adult stock is dependent on survivors from a diverse set of unique nursery area conditions, then endeavours to incorporate this knowledge into fisheries management should be further explored

    Pelagic connectivity of European sea bass between spawning and nursery grounds

    Get PDF
    The sea bass stock around the UK (northern stock) has declined rapidly over the past decade, likely due to a combination of both overfishing and low recruitment. Understanding mechanisms that drive the number of young reaching nursery grounds is important for explaining observed recruitment variability and therefore developing effective management strategies. An individual-based model (IBM) has been developed here to investigate factors affecting sea bass settlement on nursery grounds for the northern stock. Simulations considered seven years with varying environmental conditions and year class strength, and outputs were compared to empirical data from monitoring of nursery areas in the UK and Ireland. The IBM includes hydrodynamics to simulate the drift of eggs and larvae, temperature-dependent growth and mortality, and behavior affecting position in the water column. Comparison between the model and ICES assessment abundance of age class zero fish showed similar temporal variability, but with higher recruitment predicted for 2018, and a lower peak recruitment in 1997. The model reproduced general patterns of interannual variability for the Thames estuary, but performed less well for some other regions. Further investigation is needed to understand differences between modelled supply and observations, as these could be due to uncertainties in reproducing the physical environment (e.g., currents, temperature) or biology (e.g., spawning, behavior, mortality), as well as uncertainty in recruitment derived from stock assessments or data collected from nursery grounds. Nevertheless, the model provides a useful demonstration of connectivity between spawning and nursery grounds, showing spawning regions that are likely to have greatest influence on recruitment in different estuaries, and how these may vary interannually. For example, sources from western Channel and Celtic Sea can supply larvae to many areas, leading to connectivity across the Channel and Celtic Sea, and into the Irish Sea. However, other regions may depend on more local areas. For example, with the Solent estuary dependent on sources within the Channel each year. With the temperature-dependence on growth, and therefore duration of the pelagic stage, results show the potential influence of spawning timing, in relation to ocean temperatures, for connectivity between spawning and nursery grounds.</jats:p

    Challenging fear: Chemical alarm signals are not causing morphology changes in crucian carp (Carassius carassius)

    Get PDF
    Crucian carp develops a deep body in the presence of chemical cues from predators, which makes the fish less vulnerable to gape-limited predators. The active components originate in conspecifics eaten by predators, and are found in the filtrate of homogenised conspecific skin. Chemical alarm signals, causing fright reactions, have been the suspected inducers of such morphological changes. We improved the extraction procedure of alarm signals by collecting the supernatant after centrifugation of skin homogenates. This removes the minute particles that normally make a filtered sample get turbid. Supernatants were subsequently diluted and frozen into ice-cubes. Presence of alarm signals was confirmed by presenting thawed ice-cubes to crucian carp in behaviour tests at start of laboratory growth experiments. Frozen extracts were added further on three times a week. Altogether, we tested potential body-depth-promoting properties of alarm signals twice in the laboratory and once in the field. Each experiment lasted for a minimum of 50&nbsp;days. Despite growth of crucian carp in all experiments, no morphology changes were obtained. Accordingly, we conclude that the classical alarm signals that are releasing instant fright reactions are not inducing morphological changes in this species. The chemical signals inducing a body-depth increase are suspected to be present in the particles removed during centrifugation (i.e., in the precipitate). Tissue particles may be metabolized by bacteria in the intestine of predators, resulting in water-soluble cues. Such latent chemical signals have been found in other aquatic organisms, but hitherto not reported in fishe

    Distribution and Habitat Associations of Billfish and Swordfish Larvae across Mesoscale Features in the Gulf of Mexico

    Get PDF
    Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006–2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m−2) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m−2), white marlin (5.44 larvae 1000 m−2), and swordfish (4.67 larvae 1000 m−2). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations

    Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat

    Get PDF
    Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids

    REPRODUCTIVE-CYCLE AND ENERGETIC COST OF REPRODUCTION OF THE NEOGASTROPOD BUCCINUM-UNDATUM IN THE IRISH SEA

    No full text
    The annual reproductive cycle and cost of reproduction of the common whelk, Buccinum undatum L. (Gastropoda: Prosobranchia) were studied off Douglas, south-east of the Isle of Man. Sexual maturity was reached at 60-70 mm shell length. Two years of laboratory observation and field data indicated an autumn to mid-winter breeding season. Egg-laying occurred in the laboratory mainly between December and January, and hatching ofjuveniles between April and early May, 3-5 months after spawning. The cycles of testis and ovary development were very similar, especially during the breeding period. The annual energy invested in reproduction was estimated to be at least 4.1 kJ m-2. The investment by females (3.84 kJ m-2 y-1) was much greater than by males (0.26 kJ m-2 y-1)

    Potential for adaptation to climate change in a coral reef fish

    No full text
    Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by environment interactions and nongenetic maternal components of phenotypic variation in fitness-related traits in the coral reef damselfish, Acanthochromis polyacanthus. Offspring of wild-caught breeding pairs were reared for two generations at current-day and two elevated temperature treatments (+1.5 and +3.0 °C) consistent with climate change projections. Length, weight, body condition and metabolic traits (resting and maximum metabolic rate and net aerobic scope) were measured at four stages of juvenile development. Additive genetic variation was low for length and weight at 0 and 15 days posthatching (dph), but increased significantly at 30 dph. By contrast, nongenetic maternal effects on length, weight and body condition were high at 0 and 15 dph and became weaker at 30 dph. Metabolic traits, including net aerobic scope, exhibited high heritability at 90 dph. Furthermore, significant genotype x environment interactions indicated potential for adaptation of maximum metabolic rate and net aerobic scope at higher temperatures. Net aerobic scope was negatively correlated with weight, indicating that any adaptation of metabolic traits at higher temperatures could be accompanied by a reduction in body size. Finally, estimated breeding values for metabolic traits in F2 offspring were significantly affected by the parental rearing environment. Breeding values at higher temperatures were highest for transgenerationally acclimated fish, suggesting a possible role for epigenetic mechanisms in adaptive responses of metabolic traits. These results indicate a high potential for adaptation of aerobic scope to higher temperatures, which could enable reef fish populations to maintain their performance as ocean temperatures rise
    • …
    corecore