28 research outputs found

    Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations

    Full text link
    The present paper introduces an efficient and accurate numerical scheme for the solution of a highly anisotropic elliptic equation, the anisotropy direction being given by a variable vector field. This scheme is based on an asymptotic preserving reformulation of the original system, permitting an accurate resolution independently of the anisotropy strength and without the need of a mesh adapted to this anisotropy. The counterpart of this original procedure is the larger system size, enlarged by adding auxiliary variables and Lagrange multipliers. This Asymptotic-Preserving method generalizes the method investigated in a previous paper [arXiv:0903.4984v2] to the case of an arbitrary anisotropy direction field

    Crouzeix-Raviart MsFEM with Bubble Functions for Diffusion and Advection-Diffusion in Perforated Media

    Get PDF
    International audienceThe adaptation of Crouzeix - Raviart finite element in the context of multiscale finite element method (MsFEM) is studied and implemented on diffusion and advection-diffusion problems in perforated media. It is known that the approximation of boundary condition on coarse element edges when computing the multiscale basis functions critically influences the eventual accuracy of any MsFEM approaches. The weakly enforced continuity of Crouzeix - Raviart function space across element edges leads to a natural boundary condition for the multiscale basis functions which relaxes the sensitivity of our method to complex patterns of perforations. Another ingredient to our method is the application of bubble functions which is shown to be instrumental in maintaining high accuracy amid dense perforations. Additionally, the application of penalization method makes it possible to avoid complex unstructured domain and allows extensive use of simpler Cartesian meshes

    Time-delayed Follow-the-Leader model for pedestrians walking in line

    Get PDF
    International audienceWe use the results of a pedestrian tracking experiment to identify a follow-the-leader model for pedestrians walking-in-line. We demonstrate the existence of a time-delay between a subject's response and the predecessor's corresponding behavior. This time-delay induces an instability which can be damped out by a suitable relaxation. By comparisons with the experimental data, we show that the model reproduces well the emergence of large-scale structures such as congestions waves. The resulting model can be used either for modeling pedestrian queuing behavior or can be incorporated into bi-dimensional models of pedestrian traffic. Acknowledgements: This work has been supported by the french 'Agence Nationale pour la Recherche (ANR)' in the frame of the contract "Pedigree" (ANR-08-SYSC-015-01). JH acknowledges support of the ANR and the Institut de Mathématiques de Toulouse, where he conducted this research. AJ acknowledges support of the ANR and of the Laboratoire de physique t A c orique in Orsay where she conducted this research. PD is on leave from CNRS, Institut de Mat A c matiques de Toulouse, France

    An efficient numerical method for solving the Boltzmann equation in multidimensions

    Get PDF
    International audienceIn this paper we deal with the extension of the Fast Kinetic Scheme (FKS) [J. Comput. Phys., Vol. 255, 2013, pp 680-698] originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3DĂ—3D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations

    Fast Kinetic Scheme : efficient MPI parallelization strategy for 3D Boltzmann equation

    No full text
    International audienceIn this paper we present a parallelization strategy on distributed memory systems for the Fast Kinetic Scheme - a semi-Lagrangian scheme developed in U. Comput. Phys., Vol. 255, 2013, pp 680-698] for solving kinetic equations. The original algorithm was proposed for the BGK approximation of the collision kernel. In this work we deal with its extension to the full Boltzmann equation in six dimensions, where the collision operator is resolved by means of fast spectral method. We present close to ideal scalability of the proposed algorithm on tera- and peta-scale systems
    corecore