
Time-delayed Follow-the-Leader model for pedestrians

walking in line
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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

We use the results of a pedestrian tracking experiment to identify a follow-
the-leader model for pedestrians walking-in-line. We demonstrate the existence
of a time-delay between a subject’s response and the predecessor’s corresponding
behavior. This time-delay induces an instability which can be damped out by a
suitable relaxation. By comparisons with the experimental data, we show that the
model reproduces well the emergence of large-scale structures such as congestions
waves. The resulting model can be used either for modeling pedestrian queuing
behavior or can be incorporated into bi-dimensional models of pedestrian traffic.
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1 Introduction

The need for accurate predictions of pedestrian behavior is rapidly growing, due to the
constant increase of urban populations worldwide and to the strengthening of safety regu-
lations imposed to buildings and public areas. Yet there is no consensus about what model
of pedestrian behavior is the most appropriate. This is probably due to the difficulty of
precisely assessing the validity of models in an unambiguous way. Indeed, in natural con-
ditions, many factors which are difficult to entangle may influence pedestrian behavior,
such as the environment, the topology of the premises, the social and psychological state
of the pedestrians, etc. On the other hand, the design of experiments in fully controlled
situations is costly, time-consuming and strongly impeded by experimental constraints.

Many models of pedestrian dynamics have been proposed in the literature. A recent
review on crowd modeling can be found in [3]. A vast majority of the models are based on
Individual-Based Models (IBM), which describe the behavior of each pedestrian and its
interactions with the neighboring pedestrians individually. Such models can be roughly
categorized as follows. There are models based on e.g. heuristic rules [29, 23], mechanical
models [11, 12, 13], optimal control theory models, [14], Cellular-Automata [4, 24] and
Vision-Based models [8, 15, 27, 32]. All these models partially reproduce the behavior of
real crowds, each of them having its pros and cons.

One of the difficulties in reproducing actual pedestrian dynamics comes from its two-
dimensional nature and the fact that the transversal and longitudinal dynamics (with
respect to the walking direction) combine in a complex way which is hard to desantangle.
Collision avoidance manoeuvres by pedestrians involve controls on both their velocity
direction and amplitude [25, 26], a feature that has already been implemented in some
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models [9, 10, 20, 23]. In order to better understand the role of each of these controls,
in this paper we consider a one-dimensional configuration where pedestrians walk on line
without being able to pass each other. This situation is a paradigm for narrow corridors [6]
or dense situations where lane form and pedestrians tend to follow a predecessor walking in
the same direction [22, 33]. Moreover, following behavior as observed in one-dimensional
experiments can be used for analyzing or modeling two-dimensional situations [19, 31].
The study of one-dimensional pedestrian following behavior has also triggered interest for
its own sake [16, 17, 18, 30].

In this paper, we rely on experimental results using motion capture techniques reported
in [21] to calibrate the parameters of a follow-the-leader model inspired from car traffic
[5, 7]. However, on the basis of the experimental data, we demonstrate that it is necessary
to consider a non-zero time delay in the model, i.e. that the acceleration of a pedestrian
at a given time is determined by the relative position and velocity of this pedestrian
with respect to his predecessor at an earlier time. This results in a system of delay
differential equations. It is well known that such delay differential systems may not be
stable depending of the choice of the model parameters [2]. In this paper, we show that,
within the range of parameters found from the calibration of the model, the model is
actually not stable. This leads us to introduce some dissipation mechanism in the form
of a relaxation of the pedestrian velocity to the average velocity of a certain number of
his predecessors. Thanks to the introduction of this additional mechanism, the model
becomes well-posed. We numerically show that, with a physically consistent choice of
the parameters of the relaxation operator, the model does indeed provide extremely good
agreement with the experiments for large pedestrian densities. For lower density however,
it seems that additional mechanisms which are not included in the model are at play.

The paper is organized as follows. In Section 2 we describe the experiments and the
filtering method that is applied to the data. In Section 3 we discuss the model and
show that a delay term must be added. We perform a stability analysis of the resulting
delay-differential system and show that a relaxation term must be added to obtain a
stable model. We then estimate the parameters of the model from the experimental
data. In Section 4 we present the result of the so-obtained calibrated model and we
assess the quality of the calibration by looking at macroscopic observables such as the
statistics of jams. We show that the model is able to reproduce the experimental data
in a very satisfactorily manner. The paper is concluded by a discusion in Section 5. A
technical annex explores how the results of the calibration depends on the data processing
parameters and shows that apart from the choice of the cutoff frequency in the data
filtering step, they are insensitive to this choice. The cutoff frequency is chosen fo filter
out the pedestrian stepping frequency while keeping all phenomena occuring at lower
frequencies.

2 Materials and methods

2.1 Experiments

The description of the experimental setup can be found in [16]. We recall it briefly for
the sake of completeness. In this experiments, subjects were instructed to walk in line
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on a circular path without passing each other. The trajectory of each pedestrian was
recorded using high precision motion capture technology [22]. Experiments took place in
a ring-shaped arena. The imposed circular path was chosen close to either the inner or the
outer boundary of the arena. This provided a way to modify the density of pedestrians
(another way being by changing the number of subjects enrolled in the experiment). The
choice of circular paths was made in order to avoid spurious clogging effects arising at the
ends of a rectilinear path when the subjects enter or exit the path. The trajectories of
the pedestrians were reconstructed using data processing methods described in [21].

Up to 28 subjects were enrolled in the experiments. They were volonteers and unin-
formed of the purpose of the experiment. They were instructed to walk at their natural
pace and forbidden to talk to each other. The inner and outer radii of the circular arena
were respectively 2 and 4.5 m. The observed average radius of the pedestrians’ circu-
lar trajectory in the experiments using the inner radius was 2.4 m (implying an average
perimeter of 15.08 m). For the experiments using the outer radius, the respective figures
were 4.1 m and 25.76 m. Table I of [16] gives a summary of the experimental parame-
ters (number of subjects, use of inner or outer circle, pedestrian density and number of
replications). The typical duration of each replication was 1 minute. Each subject was
equipped with 4 markers, one on the left shoulder, two on the right shoulder, and one
on the forehead. The ring-shaped arena was surrounded by 12 infra-red cameras which
detected the markers. A dedicated software converted this information into the three-
dimensional coordinates of each marker. After some processing of the data described in
[21], the planar two-dimensional coordinates of the barycenter of the four markers of each
subject was reconstructed with a frequency of 120 Hz.

2.2 Experimental data

The experimental data keep records of the planar positions (x(tn), y(tn)) of each pedestrian
at sampling times tn, with a sampling frequency of 120 Hz (i.e. two consecutive sampling
times are separated by ∆t = 1/120s). To exploit the fact that the pedestrians are moving
on a circle, we transform the cartesian coordinates (x(tn), y(tn)) into polar coordinates
(r(tn), θ(tn)) relative to the center of the circle and to some reference axis. We can then
estimate the angular velocity ω:

ω = θ̇ =
1

r
(− sin θ ẋ+ cos θ ẏ), (2.1)

where dots denote time derivatives and ẋ and ẏ are approximated by finite differences.
The experimental data are perturbed by quasi-periodic oscillations due to the pedes-

trian stepping behavior. We will discard the effect of steps in the models as we are
interested in longer time scales where they have no predominant influence. For this rea-
son, we strongly reduce the amplitude of these oscillations by applying a linear fourth
order filter to the position data. In the frequency domain ν, and for any quantity u(t)
whose Fourier transform in time is denoted by û(ν), the resulting filtered quantity uf (t)
has Fourier transform ûf (ν)given by:

ûf (ν) =
1

1 + c ν4
û(ν) for some constant c > 0. (2.2)
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Due to its high order, this filter also reduces the amplitude of the oscillations of the first
and second order time-derivatives (i.e. the velocity and the acceleration of the pedestri-
ans). The cutoff frequency associated to the filter (2.2) is fc =

2π
ωc

where ωc satisfies

1

1 + cω4
c

=
1√
2
. (2.3)

The cutoff frequency is chosen in such a way that as much information in the data is kept
as possible. From the experiments, the step period is about 2 s. Consequently, the cutoff
frequency 0.5 Hz has been chosen. A study of the influence of the cut-off frequency on
the results supports this conclusion (see section 5).

3 Theory: the Follow-The-Leader model

3.1 The model

The Follow-The-Leader (FTL) model is a microscopic model which describes the indi-
vidual behavior of each agent and his interactions with his neighbors. It has been first
used in the context of car traffic [5, 7]. There are many variants of the FTL model but a
fairly common one is written as follows (adopting notations of polar geometry which are
best suited to the experimental setup). We consider N pedestrians on the 1D circle with
angular positions θi(t), and angular velocities ωi(t), for i = 1, · · · , N functions of time t.
These quantities evolve according to the following system of delay-differential equations,
written for i = 1, · · · , N :

θ̇i(t) = ωi(t), (3.1)

ω̇i(t+ τ) = C
(ωi+1 − ωi)(t)

|θi+1 − θi|1+γ(t)
. (3.2)

Here C > 0, τ > 0 and γ ≥ −1 are modeling constants to be calibrated on the data.
The (i+1)-th pedestrian is the leader of (i.e. the one exactly before) the i-th pedestrian.
This model can be interpreted as follows. There is a first phase where the pedestrians
observes his leader, acquires the knowledge of the quantities ωi+1(t) and θi+1(t) and makes
a decision about what reaction should be implemented in response to these observations.
This decision-making is represented by the right-hand side of (3.2). The second phase
is the action phase where the pedestrian acts on his own velocity to comply with his
decision-making rule. It is represented by the left-hand side of (3.2). The time delay τ
corresponds to the time needed between the decision and its translation into action. The
decision-making rule itself describes how the pedestrian adjusts his velocity to that of his
leader. To this aim, he decelerates if he is faster than his leader and accelerates if he is
slower, in proportion to the speed difference, as shown at the numerator of the right-hand
side of (3.2). This adjustment is modulated by the proximity of the pedestrian to his
leader, a short distance inducing a stronger reaction, as expressed by the denominator of
the right-hand side of (3.2). The constant C quantifies the intensity of the reaction and γ
its dependence upon the distance to the leader. Note that (θi+1− θi)(t) is always positive
if the pedestrians are moving counterclockwise and always negative if they are moving
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Figure 1: (ωi+1 − ωi)(t) (in blue) and ω̇i(t) (in red) as functions of time t for a typical
pedestrian trajectory. For the sake of a better representation, both functions are nor-
malized by their maximal value. We notice that ω̇i(t) has roughly the same features as
(ωi+1 − ωi)(t) with some time delay.

clockwise. Since angles are quantities defined up to the addition of a multiple of 2π, we
take for (θi+1− θi)(t) the smallest positive (respectively largest negative) quantity among
all such possible values.

While the general FTL model used in traffic incorporates a time-delay [5, 7], it has
often been neglected in the literature (see e.g. [1]). Here, the experimental data suggest
that a non-zero time-delay should be used. Indeed, Fig. 1 shows the quantities (ωi+1 −
ωi)(t) and ω̇i(t) as functions of time, for a typical pedestrian trajectory. From this figure,
it appears clearly that these quantities are correlated but with some time shift. This
observation is generic: it applies to a large proportion of our experimental data. Then,
for the sake of simplicity, we restrict ourselves to γ = −1 and will consider the following
model, written for i = 1, · · · , N :

θ̇i(t) = ωi(t), (3.3)

ω̇i(t+ τ) = C(ωi+1 − ωi)(t). (3.4)

Indeed, later on, it will prove interesting to consider even more general models in which
the constants C and τ are density-dependent, which contains the previous model as a
particular case.

Unfortunately, time-delay differential equations are not always linearly stable. Linear
stability means that if a steady-state solution (here for instance, a solution where all
velocities ωi are equal) is slightly perturbed, the linearized system has bounded solutions.
The stability analysis of the FTL model (3.3), (3.4) has been performed in [5]. It is shown
that the model is stable if Cτ < 1/2. With the values of C and τ calibrated from the
experiments, we find that this condition is not always fulfilled and that the FTL model
can be ustable. After the development of the instability, it is observed that the solution
does not fit with the observed trajectories. In particular, we observe particle crossings
that are forbidden in the experiments. Therefore, in order to be usable, the FTL model
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has to be stabilized.
Here, the stabilization consists in adding a relaxation term which describes the relax-

ation of the subject’s velocity to an averaged velocity over a certain number of neighbors.
It is intended to model the fact that a given pedestrian may perceive other subjects than
just his leader and take them into account in the decision-making process. Since it is not
precisely known how the informations on the various neighbors are combined, the choice of
a relaxation model, being the simplest possible one, is the most reasonable. Additionally,
by tuning how the average velocity is computed, it allows some flexibility and calibration
by comparisons with the data. Therefore, the considered relaxed form of the FTL model
is as follows, for i = 1, . . . , N :

θ̇i(t) = ωi(t), (3.5)

ω̇i(t+ τ) = (1− α)C(ωi+1 − ωi)(t) + αC(ω̂i − ωi)(t), (3.6)

where the most general form of the weighted average velocity ω̂i is

ω̂i =
N−1∑

ℓ=0

bℓω(i+ℓ)|N , (i+ ℓ)|N = (i+ ℓ) modulo N, (3.7)

for positive bℓ such that
∑N−1

ℓ=0 bℓ = 1. The quantity α ∈ [0, 1] gives the balance between
the follow-the-leader term and the relaxation term. When bℓ =

1
N
, ω̂i = ω̂ is independent

of i and corresponds to the global average velocity. When bℓ is more strongly peaked
about ℓ = 0, the average velocity becomes more local. In (3.6), we have chosen to
write ω̇i(t + τ) as a convex combination of the two terms (respectively corresponding to
the relaxation towards the leader’s velocity and towards the neighbors’ average velocity)
rather than writing them as a sum. The reason for this is that the leader also appears in
the neighbors’ average velocity and that the actual measured reaction rate C should be
distributed among these two terms. It is also the choice which provides the best fit with
the experimental data as we will see below.

Remark 3.1 The model (3.6) is equivalent to the model

ω̇i(t+ τ) = C(ω̃i − ωi), i = 1, · · · , N,

where the average relaxation speed ω̃i is defined by

ω̃i =
N−1∑

ℓ=0

b̃ℓω(i+ℓ)|N ,

and is associated with averaging coefficients b̃1 = (1 − α) + αb1 and b̃ℓ = αbℓ for ℓ ≥ 2.

The coefficients b̃ℓ are positive and sum up to 1. In other words, one can restrict to the
case α = 1 for the analysis. However the parameter α provides a tuning between the FTL
model and the relaxation-to-the-mean model, and the interpretation of this parameter is
intuitive. We thus propose an analysis depending on α (and the parameters bℓ will remain
fixed).
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We now perform a stability analysis of model (3.5), (3.6). In the most general setting
considered in the present paper, the constants C and τ depend on the local density, i.e.
C = C(ρi) and τ = τ(ρi) where ρi is computed by enumerating the number of agents in
a neigborhood of θi. In this case, Eqs. (3.5), (3.6) are coupled, since ρi depends on the
values of θj for all j. Furthermore, this coupling makes the problem nonlinear. In the
special case where C and τ are constants, this coupling disappears. Indeed, eq. (3.6) can
be solved for ωi(t), i = 1, . . . , N without knowing the values of θj. Once the functions
ωi(t) are determined, Eq. (3.5) can be integrated and the values of the functions θj(t),
determined. Additionally, the delay differential equation (3.6) becomes linear. This will
be the case considered in the stability analysis performed in the section below.

3.2 Stability analysis

We write the model (3.6) in vector form:

ω̇(t+ τ) = CAω(t), (3.8)

where ω is the vector
ω = (ω1, . . . , ωN)

T ,

and the exponent T denotes the transpose of a vector or a matrix. The matrix A is such
that the vector Aω has entries (Aω)i given by

(Aω)i = (1− α)(ωi+1 − ωi) + α(
N−1∑

ℓ=0

bℓω(i+ℓ)|N − ωi).

Concerning this matrix, we have the following

Proposition 3.1 All the eigenvalues of the matrix A have a non-positive real part. More
precisely, 0 is an eigenvalue, and all the other eigenvalues have a negative real part. The
non zero eigenvalues lie in the closed disk of center -1 and radius 1.

Proof. A is a circulant matrix. If we denote by K the matrix of entries kij such that
kij = 1 if j = i+ 1, kN1 = 1 and kij = 0 otherwise, we can write:

A = −Id + (1− α)K + α
N−1∑

ℓ=0

bℓ K
ℓ.

Now, we introduce ν = exp(2iπ/N). The eigenvalues of K are νk for k = 0, . . . , N − 1.
Hence the eigenvalues of A, which will be denoted by βk are given by:

βk = −1 + (1− α)νk + α
N−1∑

ℓ=0

bℓ ν
kℓ (3.9)

= (1− α)(−1 + νk) + α

N−1∑

ℓ=0

bℓ (−1 + νkℓ).
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Figure 2: Eigenvalues of the system (3.6) for N = 28 with relaxation to the global mean
velocity in red (bℓ = 1/28 for all ℓ) and relaxation to the local mean velocity in blue
(bℓ = 1/7 for ℓ = 1..7 and 0 otherwise), with α = 0.2. The black circle is centered at -1
and has radius 1− α = 0.8.

Therefore if k = 0 then β0 = 0. Let us now consider the case k 6= 0. Then, −1 + νk

has a negative real part and −1 + νkℓ has a non-positive real part. Then, since βk is a
convex combination of all these terms, it has a non-positive real part. More precisely,
βk is a barycenter of −1 + νk which lies on the circle centered at −1 of radius 1, and of∑N−1

ℓ=0 bℓ(−1+ νkℓ) wich is a barycenter of points of the same circle, and hence, which lies
in the disk centered at −1 of radius 1. Therefore, by convexity, βk also belongs to the
disk of center -1 and radius 1. This ends the proof.

As an illustration, in Figure 2, we represent the eigenvalues of (3.6) in the complex
plane in the case N = 28, α = 0.2 and for two examples of relaxation operator (i.e. two
different choices for the coefficients bk). The case of a relaxation to the global average (i.e.
all the bk being equal and summing up to 1) is represented in red and that of a relaxation
to a local average computed on the seven closest neighbors in front (with equal weight) is
represented in blue. In both cases, we see that the eigenvalues of A have non-positive real
part, and consequently, the linear ODE ω̇(t) = CAω is stable for any value of C ≥ 0.

The following stability analysis for the ODE with delay (3.6) follows standard works
on delay ODEs [28, 2]. The characteristic equation, i.e. the equation that λ ∈ C must
satisfy for the existence of a solution of the form ω(t) = ω0e

−λt with ω0 6= 0, reads:

det(−λ Id + CAe−τλ) = 0. (3.10)

The value λ = 0 is always a solution to (3.10) (corresponding to the eigenvalue β0 = 0 of
A), whatever the value of τ ≥ 0 is, and corresponds to a state where all the agents have
the same constant velocity. The system without delay is stable, as stated in the previous
proposition. Since the eigenvalues depend continuously on the delay τ , the system with
delay is stable for delays τ such that τ < τ ⋆, where the critical delay τ ⋆ is the smallest
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delay τ such that the associated eigenequation (3.10) admits a non-zero pure imaginary
solution.

Proposition 3.2 The critical delay τ ⋆ for the model (3.6) satisfies

τ ⋆ ≥ 1

2C
.

Proof. The critical delay τ ⋆ is the smallest value of τ such that the characteristic equation
(3.10) admits a non-zero pure imaginary solution, i.e. the smallest τ such that there exists
ω0 ∈ R and some k ∈ {1, . . . , N − 1} satisfying

−iω0 + Cβke
−iτω0 = 0,

where we recall that βk, k ∈ {0, . . . , N}, denote the eigenvalues of A. Decomposing
βk = ρeiθ, we get:

− iω0 + Cρeiθe−iτω0 = 0. (3.11)

Since βk belongs to the disk centered at -1 of radius 1, we can choose θ ∈ [π/2, 3π/2] and
ρ ≤ 2|cosθ|. Let ǫ ∈ {−1, 1} denote the sign of ω0. Then (3.11) reads

ǫω0 = Cρ and ei(θ−τω0) = ǫi. (3.12)

Thanks to the second equation (3.12), there exists an integer m ∈ Z such that θ =
τω0+ǫπ/2+2mπ, and with the first equation (3.12), this leads to θ = ǫ(Cρτ+π/2)+2mπ,
or Cρτ = −π/2 + ǫθ + 2mπ. Then, we distinguish the two cases ǫ = 1 and ǫ = −1:

Case 1: ǫ = 1. Then, we have:

τ ⋆ =
θ − π/2

ρC
≥ θ − π/2

2C| cos θ| ≥
1

2C
. (3.13)

Case 2: ǫ = −1. Then:

τ ⋆ =
3π/2− θ

ρC
≥ 3π/2− θ

2C| cos θ| ≥
1

2C
.

In both cases, we find that τ ∗ is bounded from below by 1
2C

, which ends the proof.

In the case of a relaxation to the global mean velocity (i.e. when all the bℓ’s are equal),
we can prove some refined bounds on the critical delay τ ⋆, as shown in the following.

Proposition 3.3 Let us assume that bℓ = 1/N for ℓ = 0, . . . , N − 1. If N is even, then
the critical delay satisfies

max
(
1, arccos(1− α)

)

(2− α)C
≤ τ ⋆ ≤ π

2(2− α)C
.

The lower bound is also valid if N is odd. It improves that given in Prop. 3.2 if α ≤
1− cos(1) ∼ 0.46.
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Figure 3: The maximal delay τ ∗ which maintains the stability of the delay differential
system, plotted as a function of α in the case of a relaxation to the global average velocity
(bℓ = 1/N for all ℓ). Here, we have chosen C = 1.01. The upper and lower bounds given
by Prop. 3.3 are plotted in black for comparison.

Proof. By elementary properties ofN -th roots of unity, we have
∑N−1

ℓ=0 bℓν
kℓ = 1

N

∑N−1
ℓ=0 νkℓ

= 0. Then, from (3.9), we deduce that βk = −1+ (1−α)νk belongs to the circle of center
−1 and radius 1 − α. If we write βk = ρeiθ (and assume by symmetry that θ ∈ [0, π])
then simple geometric considerations show that ρ ≤ 2− α and sin(π− θ) ≤ 1− α. Hence
θ − π/2 ≥ arccos(1− α). Therefore

τ ⋆ =
θ − π/2

ρC
≥ arccos(1− α)

(2− α)C
.

Another possibility is to note that all the eigenvalues βk lie in the disk of center
(1 − α/2) and of radius 1 − α/2. Hence as above, if βk = ρeiθ then ρ ≤ (2 − α)| cos θ|.
This provides the following lower bound:

τ ⋆ ≥ 1

(2− α)C
.

If N is even, then −2 + α is an eigenvalue of A and is such that ρ = 2− α and θ = π.
Then, by (3.13), the delay at which the corresponding eigenvalue of the delay problem
reaches the imaginary axis is equal to π

2(2−α)
. Therefore, we deduce that τ ⋆ ≤ π

2(2−α)
. This

ends the proof.

The precise value of τ ⋆ can also be computed numerically since all the eigenvalues βk

are known. The result is presented in Figure 3. The quantity τ ⋆ is plotted as a function of
α (in red). By comparisons, the lower and upper bounds given by Prop. 3.3 are displayed
in black color.
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3.3 Model calibration

In order to estimate the model parameters, i.e. the delay τ and the reaction constant C
from experimental data we proceed by cross correlation. However we will consider small
sub-windows since the parameters are not strictly constant over time. The procedure for
the estimation of the delay is as follows:

We consider a time-window I. For each pedestrian i, we estimate the delay τ that
accounts the best for the measurements in this time window. This delay maximizes

τ obs = argmaxτ∈[τmin,τmax]

〈ω̇i(·+ τ), (ωi+1 − ωi)(·)〉L2

I

‖ω̇i(·+ τ)‖L2

I

,

where for two functions of time f(t) and g(t) defined on I, we denote by 〈f, g〉L2

I
and

‖f‖2
L2

I

the L2 inner product of f and g and the squared L2 norm of f , respectively defined

by

〈f, g〉L2

I
=

∫

t∈I

f(t) g(t) dt, ‖f‖2L2

I

=

∫

t∈I

|f(t)|2 dt.

In this work, the delay τ obs is searched within the interval [τmin, τmax] = [−2 s, 3 s].
For the same given pedestrian and the same time window, the best constant C is then

determined by least-squares minimization, which reads

C =
〈ω̇i(·+ τ obs), (ωi+1 − ωi)(·)〉L2

I

‖(ωi+1 − ωi)‖2L2

I

.

Associated to these quantities, the correlation coefficient is a quantity which belongs to
[−1, 1] and which provides a reliability measurement. It is defined by:

ǫ =
〈ω̇i(·+ τ), (ωi+1 − ωi)(·)〉L2

I

‖ω̇i(·+ τ)‖L2

I
‖ωi+1 − ωi‖L2

I

.

We say that the model appropriately describes the data from a given pedestrian and
a given time-window I (or that ”the data from I are compliant with the model”) if the
following two constraints are simultaneously satisfied:

(i) the correlation ǫ is close to 1, i.e. is larger than a given threshold ǫt. We choose
ǫt = 0.6 unless stated otherwise.

(ii) the resulting time-delay τ satisfies 0 ≤ τ ≤ τmax − 0.05, where [τmin, τmax] is the
interval where τ is sought.

We also discard all the data from one given pedestrian, if there are less than 1/3 compliant
data for this pedestrian, collected on all the given time windows. These outliers originate
either from intrinsic differences in the subject’s behavior or more likely from incorrect
data reconstruction. They are discarded to avoid pollution of the calibrated parameters
by incorrect data.

Thanks to this procedure, for each experiment, we collect samples which consist of all
the values of τ (or of C) for all the considered time-windows and all the pedestrians. In our
data processing, a set of windows is defined by shifting by steps equal to 50∆t = 5/12s.
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3.4 Numerical approximation

We now describe the numerical scheme that was implemented to solve the model (3.6).
This is a delay differential equation. A 4th order Runge-Kutta method was used to
solve this problem. Due to the delay, an interval of initial condition is required and the
resolution on a time interval [t1, t2] requires the knowledge of the data in the interval
[t1 − τ, t1].

We present below simulations with different values of the delay, or with density-
dependent delay, however the delays are always less than 10s. In all our simulations,
we therefore used the observations on the interval [0, 10s] as initial condition and per-
formed a simulation on the interval [10s, 80s].

4 Results

4.1 Model calibration

4.1.1 Calibration of model parameters: case of constant parameters

In a first step, we suppose that the model parameters τ and C are constant and in
particular independent of the local pedestrian density. In a forthcoming section, we will
see that the calibration is improved by making the parameters τ and C dependent of the
local density.

The estimated values of the model constants τ and C from the experimental data are
presented in Figs. 4 and 5 respectively. More precisely, Fig. 4 and 5 show histograms of
the estimated values of τ and C where the samples are defined as being pairs (pedestrian,
time window) and the samples range through all experiments with the same average
pedestrian density. The average density ρav is defined as the total number of pedestrian
involved in a given experiment divided by the average walking radius for that experiment.

Four different histograms, corresponding to four different values of the average pedes-
trian density ρav are shown by order of decreasing density: (a) ρav = 1.86 ped m−1 ;
(b) ρav = 1.59 ped m−1 ; (c) ρav = 0.93 ped m−1 ; (d) ρav = 0.31 ped m−1 (with
“ped” standing for “pedestrian”). In these histograms, only the time windows where the
data are compliant with the model are retained. For these Figures, the following param-
eters were used: cut-off frequency fc = 0.5 Hz ; window width ww = 6.67 s, correlation
threshold εt = 0.6; model parameter γ = 1.

In Table 1, we summarize the proportion of compliant data as a function of the total
number of pedestrians (we do not distinguish between the inner or outer circles). The
proportion of compliant data is small for the low average density cases (for the experi-
ments with 8 pedestrians, the average density is 0.31 ped m−1) but quite large above 16
pedestrians (average density of 0.6 ped m−1). This indicates that the delay-differential
model (3.4) is well-adapted for densities above 0.6 ped m−1 but has poorer match with
the data for lower densities.

For all the experiments where the model is relevant (all cases but low average density)
the delay τ has a distribution around a mean value of the order of 0.8 s, with a standard
deviation of the order of 0.45 s, see Figs. 4 (a), (b) and (c). We can conclude that there is
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(c) Medium low density case (24 pedes-
trians walking on the outer circle: aver-
age density 0.93 ped m−1), mean=0.8,
std=0.42.
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(d) Low density case (8 pedestri-
ans: average density 0.31 ped m−1),
mean=1.04, std=0.58.

Figure 4: Histograms of the time delay τ for different average densities ρav: (a) ρav =
1.86 ped m−1 ; (b) ρav = 1.59 ped m−1 ; (c) ρav = 0.93 ped m−1 ; (d) ρav =
0.31 ped m−1 (with “ped” standing for “pedestrian”). The samples are defined as being
pairs (pedestrian, time window) and the samples range through all experiments with the
same average pedestrian density. For each case we indicate the mean value and the stan-
dard deviation of τ . For each pedestrian, the time delay is estimated within the range
[τmin, τmax] = [−2 s, 3 s]. The time windows are shifted by steps equal to 50∆t = 0.417s.

Number of pedestrians percentage of compliant data
8 44.96 %
16 74.91%
20 82.34%
21 84.96%
24 79.75%
28 77.44%

Table 1: Proportion of compliant data as a function of the total number of pedestrians.
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(c) Medium low density case(24 pedes-
trians walking along the outer cir-
cle: average density 0.93 ped m−1),
mean=0.84, std=0.36.
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(d) Low density case (8 pedestri-
ans: average density 0.31 ped m−1),
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Figure 5: Histogram of the reaction constant C for different average densities ρav:
(a) ρav = 1.86 ped m−1 ; (b) ρav = 1.59 ped m−1 ; (c) ρav = 0.93 ped m−1 ;
(d) ρav = 0.31 ped m−1 (with “ped” standing for “pedestrian”). The samples are defined
as being pairs (pedestrian, time window) and the samples range through all experiments
with the same average pedestrian density. For each case we indicate the mean value
and the standard deviation of C. For each pedestrian, the values of C is estimated
within the range [τmin, τmax] = [−2 s, 3 s]. The time windows are shifted by steps equal to
50∆t = 0.417s.
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no fixed value for the delay τ but rather a range of values. Similarly, for the experiments
other than the low average density experiments, the constant C has a distribution around
a mean value of the order of 1 m1/2s−1, with a standard deviation of the order of 0.4
m1/2s−1, see Figs. 5 (a), (b) and (c). The choice of the delay model (3.4) or its stabilized
version (3.6) is comforted by the fact that a large amount of data fits the model (see
Table 1).

4.1.2 Sensitivity with respect to the processing parameters

The calibration procedure of the model from the data depends on several processing
parameters, namely the correlation threshold ǫt for a sample defined by a (pedestrian,
time-window) pair to be compliant with the model, the time window width ww, the cut-
off frequency fc. We have tested the influence of each parameter on the estimation of τ
and C. The detailed analysis is presented in the appendix B and summarized in Table 2.

As a summary, the following observations can be made:

1. The parameters ǫt and ww have a little influence on the results, and therefore our
analysis is stable with respect to these parameters.

2. The parameter fc has a strong influence on the estimated time-delay τ and reaction
constant C. Therefore the choice of this parameter is of importance, and its value
must be chosen according to ’physics-based’ criteria. In the rest of the work we
use fc = 0.5 Hz, which is of the order of magnitude of the stepping frequency.
Therefore, this value allows to smooth out the oscillations due to the stepping of
the pedestrians without perturbing phenomena occuring at longer time-scales.

parameter range relative relative varia- relative varia
range tion of τ tion of C

ǫt 0.6 – 0.8 29 % 1.6 % 5.5 %
ww 5 – 8 s 46 % 2.5 % 5.3 %
fc 0.2 – 1.2 Hz 143 % 90 % 45 %

Table 2: Sensitivity of τ and C with respect to the correlation cut-off ǫt, time-window
width ww and cut-off frequency fc. For each parameter, we indicate the range, i.e. the
interval of values where this parameter was tested, the relative range (in %), i.e. the
interval length divided by the median value, and the associated relative variations of the
two parameters τ and C (in %)

4.1.3 Calibration of local density-dependent model parameters

In Figures 4-5, we observe that the distribution of τ and C depend on the average density
of the pedestrians. The value of τ is decreasing with respect to the average density while
that of C is increasing. Both quantities tend to be only mildly varying upon the average
density when this density is large. On the other hand, we observe a strong variability of
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τ and C among the different samples. This suggests that these quantities could actually
depend on the local density at the location of pedestrian i defined as ρi = 1/di,i+1, with
di,i+1 = Rav(θi+1 − θi) and Rav being the average radius of the walking trajectory.

In order to investigate this hypothesis, we use density-dependent fits of τ and C, using
the compliant data collected during the complete set of experiments. Here, following the
general form of the FTL model (3.1), (3.2), we use piecewise power laws. More precisely,
we use the following forms of τ and C:

τ(ρ) =

{
α1(

ρ
ρτ
)β1 for ρ ≤ ρτ

α1(
ρ
ρτ
)β2 for ρ > ρτ

, C(ρ) =

{
α2(

ρ
ρC
)β3 for ρ ≤ ρC

α2(
ρ
ρC
)β4 for ρ > ρC

. (4.1)

The functions of τ and C are required to be continuous with respect to ρ. This is a
nonlinear regression problem since we want to determine the thresholds ρτ and ρC . To
estimate α1, α2, β1, β2, ρτ , ρC , we performed a least squares regression after taking the
log. For comparison, we performed a robust regression in L1 norm, which reduces the
influence of outliers. We also fitted a single power law for C and τ , i.e.

τ = α1ρ
β1 , C = α2ρ

β2 , (4.2)

using robust regression. We finally estimated constants τ and C by taking the median
values of their distributions.

The results are presented in Fig. 6 for the estimation of the time-delay τ (left) and
of the reaction constant C (right). We present two-dimensional color-coded histograms
of of the (density ρ, time-delay τ) pairs (left) and (density ρ, reaction constant C) pairs
(right) and associated fitted curves. The fitted curves for piecewise laws (4.1) using the
standard and robust regression are represented by the green and red color broken lines
respectively. The fitted curves for a single power law (4.2) are represented by the black
lines.

From Fig. 6, it seems that the robust regression to the dual power law (4.1) provides a
better match than the standard regression to the dual power law or the robust regression
to the single power law (4.2). However, the differences between these three calibrations
as read from Fig. 6 is not striking. In order to better assess the quality of each of these
calibrations, in the next section, we perform numerical simulations of all these models and
compare them with the experimental data. More precisely, we select the three different
sets of the parameters for τ and C given by the robust fit to the dual power law (4.1),
the robust linear fit to the single power law (4.2) and the constant values defined by the
median of the data. These choices give rise to the following model parameters:

1. Piecewise power laws (Pm1):

τ =

{
0.712 ρ−0.522, ρ ≤ 1.22

0.625 ρ0.145, ρ > 1.22
, C =

{
0.864 ρ0.803, ρ ≤ 1.22

1.000 ρ0.06, ρ > 1.22
. (4.3)

2. Single power law (Pm2):

τ = 0.726ρ−0.212, C = 0.862ρ0.405, (4.4)
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Figure 6: Two-dimensional color coded histograms of the (density ρ, time-delay τ) pairs
(left) and (density ρ, reaction constant C) pairs (right) and associated fitted curves.
The fitted curves for piecewise laws (4.1) using the standard and robust regression are
represented by the green and red color broken lines respectively. The fitted curves for a
single power law (4.2) are represented by the black lines.

3. Constant parameters (Pm3):

τ = 0.643, C = 1.01. (4.5)

It follows from the analysis of Section 3.2 that the model with α = 0 is unstable for
the constant values (4.5) of the parameters since the stability condition is 2Cτ ≤ 1, and
this condition is not fulfilled by the constant parameters (4.5). The other fits (4.3) and
(4.4) appear numerically unstable. For this reason, we need to add a relaxation term. To
this effect, we consider α > 0 and the relaxation model (3.6). The value we chose for the
relaxation velocity ω̂i is the average of the velocities of the n′ pedestrians in front of the
considered pedestrian i. Our trials with n′ equal to 1/4 of the total number of pedestrians
showed a reasonnable agreement with the experimental data and this value n′ = 1/4 is
the one retained in all the numerical simulations.

4.2 Comparisons between simulations and experimental data

In this section we present comparisons of the simulation results with the experimental
data. We consider model (3.6) where C, τ are given by (Pm1), (Pm2) or (Pm3) and
α = 0.2, 0.25 or 0.3. These comparisons are first presented in detail for an experiment
(called experiment (A)) corresponding to a large average density. We then briefly present
comparisons for two other experiments, one also for a large average density (called ex-
periment (B)) and one for a smaller average density (called experiment (C)) in order to
document the versatility of the model and its range of validity.

We first consider experiment (A). This experiment involved 24 pedestrians walking on
the inner circle with an average walking radius of 2.35 m. Initially, the pedestrians were
instructed to form a compact group where each subject (except the leader) was almost
in contact with his predecessor. We simulated the model taking as initial values the data
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extracted from the experiment, i.e. the initial data were taken as the observations on the
time interval [0 s, 10 s]. Indeed, for a delay differential system, we need initial conditions
on a whole time interval. The simulations were run on the time interval [10s, 80s], which
corresponded to the duration of the experiments.

Fig. 7 shows the positions of the pedestrians (in units of radians on their circular
path) as a function of time (in s) in experiment (A). Since several laps were performed
during one experiment, the position angle is incremented by 2π times the number of laps
performed at the corresponding time so as to make the trajectories continuous. Each of
the pedestrians gives rise to a different trajectory represented by a different curve. The
portions of the trajectory of a given pedestrian where he is caught in a jam are highlighted
in red, where a jam is defined as a connected set of pedestrians whose velocity is less than
0.8 times the average velocity. Fig. 7 shows the experimental data (top left) and the
simulation with model parameters (Pm1) (top right), (Pm2) (bottom left) and (Pm3)
(bottom right). For each set of parameters we display the results obtained with the value
of α that gives the closest similarity between the simulations and the experimental data.
Model parameters (Pm1) (Fig. 7 top right) and (Pm3) (Fig. 7 bottom right) seem to
give the best match to the experimental data (compare with Fig. 7 (top left)). Indeed,
the number of jams is about the same in these two simulations and in the experiments.
By contrast, model parameters (Pm2) (Fig. 7 bottom left) seem to lead to an excessive
damping of the jams and a too fast convergence towards a state where the pedestrians
are equidistant and move with the same velocity.

Likewise, Fig. 8 displays the velocities of the pedestrians (in ms−1) as a function of
time (in s) in experiment (A) (Fig. 8 (top left)) and for model parameters (Pm1) (Fig.
8 (top right)), (Pm2) (Fig. 8 (bottom left)) and (Pm3) (Fig. 8 (bottom right)). These
figures confirm that model parameters (Pm1) and (Pm3) give better results that model
parameters (Pm2). Indeed, in the latter, pedestrian velocities are too much damped.
We observe however, that model parameters (Pm1) and (Pm3) also produce too much
velocity damping, but to a much lesser extent than model parameters (Pm2).

In order to assess the quality of the model, we test its ability to reproduce macroscopic
features of the system, such as the dynamics of jams. Indeed, from the definition of a jam
as being a connected set of pedestrians whose velocity is less than 0.8 times the average
velocity, we can retrieve descriptors of the jam dynamics such as the velocity of the jam
head, the average velocity of the pedestrians in jams or the number of pedestrian in jams.

Fig. 9 (top) displays the average jam head velocity in ms−1 as a function of time
in s in experiment (A). Experimental values are shown in solid red line and the standard
deviation is shown in black dotted line. Simulations with model parameters (Pm1) to
(Pm3) are displayed with dotted blue lines (thick dots for (Pm1), medium thick dots for
(Pm2) and light dots for (Pm3)). The three models provide average jam head velocities
that are consistent with the uncertainties of the measurements but there are no jams for
(Pm2) after time 70 s, by contrast with experimental values or models (Pm1) and (Pm3).

Fig. 9 (bottom) displays the average velocity of pedestrians in jams in ms−1 as a
function of time in s in experiment (A). Experimental values are shown in thick red line,
while simulation results for models (Pm1), (Pm2) and (Pm3) are shown with dotted green,
blue and magenta lines respectively. Experimental values for the average velocity in jams
have a greater dispersion than simulated ones. On the other hand, values obtained by
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models (Pm1) and (Pm3) are within the range of uncertainties of the experimental data.
By contrast, model (Pm2) is off by almost 100 %.

Fig. 10 shows the number of pedestrians in jams as a function of time in s in exper-
iment (A). Experimental values are shown in thick red line, while simulation results for
models (Pm1), (Pm2) and (Pm3) are shown with dotted green, blue and magenta lines
respectively. We observe that models (Pm1) and (Pm3) provide values within the uncer-
tainties of the measurements. Measurements have more variability and the two models
tend to slightly overestimate the average number of pedestrian in jams. By contrast,
model (Pm2) confirms the tendency to overdamp jams and displays fewer pedestrians in
jams than experimental measurements.

We now briefly present comparisons between experimental data and simulations of
models (Pm1) and (Pm3) (we discard model (Pm2) on the basis of the poor matches
it provided to the previous experiment) in two other experiments. The first one, called
experiment (B) is, like the previous one, a large density experiment, with 24 pedestrians
walking along the inner circle with average walking radius of 2.50 m and initially arranged
in a compact group. Fig. 11 provides the positions of the pedestrians (in radians, on
the circle) as functions of time (in s). Experimental data are shown in the left figure,
while models (Pm1) and (Pm3) are shown in the middle and right figures respectively.
Parameter α was set to 0.3 in both (Pm1) and (Pm3). Here model (Pm1) provides a
better match than model (Pm3). Model (Pm3) exhibits an excessive damping of the
jams, with jams disappearing after 70 s of time. By contrast, jams are maintained with
model (Pm1) but they seem to travel more quickly than in the experimental data. This
is correlated with the observation that the pedestrians seem also to travel faster than in
the experiment. In the experiment, pedestrians seem to slow down after a time of about
10-20 s. This could explain the observed discrepancy with the numerical simulation since
the initialization of the delay differential system is set by using the data over the first
interval of 10 s duration. This change of pace of the pedestrians could be due to the
transition from a compact group to an equally spaced group. This tends to indicate that
the model is not precise enough for the very large densities that prevail in the compact
group. It is not very surprising since very few experimental data were available in that
density range, and so, the calibration does simply not take it into account.

The final experiment, called experiment (C) is a small density experiment, with 8
pedestrians walking along the outer circle with an average walking radius of 4.15 m and
initially arranged in an equidistant manner. Fig. 12 provides the positions of the pedes-
trians (in radians, on the circle) as functions of time (in s). Experimental data are shown
in the left figure, while models (Pm1) and (Pm3) are shown in the middle and right figures
respectively. Parameter α was set to 0.3 in both (Pm1) and (Pm3). Here, the density is
too low and no jam forms, so we cannot use jams to assess the quality of the model. But
we easily notice that simulations provide too fast pedestrian velocities compared to the
experiments. Also, some clustering of the pedestrians emerges (though not affecting their
velocity and thus, not qualifying as jams according to our previous definition). Indeed,
there are essentially four clusters at the end of the experiments, with respectively 1, 2, 3,
and 2 pedestrians separated by bigger gaps. This clustering is midly reproduced in the
two models (a little bit more accurately by model (Pm3)) but does not look as sharp as
in the experiments. Therefore, different observables than those defined above should be
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Figure 7: Positions of the pedestrians (in radians, on the circle) as functions of time (in s)
in experiment (A). Experimental data (top left) and models with model parameters (Pm1)
(top right), (Pm2) (bottom left) and (Pm3) (bottom right). Portions of a pedestrian
trajectory corresponding to a jam are highlighted in red (a jam is defined as a set of
pedestrians whose velocity is less than 0.8 times the average velocity). During the time
interval between 0 and 10s (left-hand side of the vertical bar) the delay system is initialized
by the experimental data.

set up for assessing the validity of the models in the low density case.

5 Discussion

The present study of pedestrians walking in line has demonstrated the existence of a sig-
nificant time-delay, i.e. that the acceleration of a pedestrian at a given time is determined
by the relative position and velocity of this pedestrian with respect to his predecessor at
an earlier time. This time delay is about 0.6 s. Given that finding, we have developed
three different time-delayed Follow-the-Leader models. The first model (Pm3) considers
that both the time delay τ and the reaction constant C (i.e. the acceleration intensity)
are constant. The second model (Pm2) considers that τ and C are power laws of the local
density. Finally, the third model (Pm1) supposes that there are two density regimes and
that the power law dependences of τ and C are different at low and high local densities,
with a larger power at small density than at large density.

In all cases, the models needed to be stabilized by the addition of a relaxation of
each pedestrian’s velocity to the average velocity of a certain number of his predecessors.
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(b) Parameters (Pm1) and α = 0.3
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(c) Parameters (Pm2) and α = 0.25
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(d) Parameters (Pm3) and α = 0.3

Figure 8: Velocities of the pedestrians in experiment (A). Experimental data (top left)
and model parameters (Pm1) (top right), (Pm2) (bottom left) and (Pm3) (bottom right).
During the time interval between 0 and 10s (left-hand side of the vertical bar) the delay
system is initialized by the experimental data.
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(a) Jam head velocity.
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(b) Average velocity in jams.

Figure 9: Left: Average Jam head velocity in ms−1 as a function of time in s in experiment
(A). Experimental values are displayed in solid red line and the standard deviation is
displayed in black dotted line. Simulations with model parameters (Pm1) to (Pm3) are
displayed with dotted blue lines. Thick dots are for (Pm1), medium thick dots for (Pm2)
and light dots for (Pm3). The three models provide average jam head velocities that are
consistent with the uncertainties of the measurements but there are no jams for (Pm2)
after time 70 s, by contrast with experimental values or models (Pm1) and (Pm3). Right:
Average velocity of pedestrians in jams in ms−1 as a function of time in s in experiment
(A). Experimental values are displayed in thick red line, while simulation results for
models (Pm1), (Pm2) and (Pm3) are displayed in dotted green, blue and magenta lines
respectively. Experimental values have a greater dispersion than simulated ones but
values obtained by models (Pm1) and (Pm3) are within the range of uncertainties of the
experimental data. By contrast, values obtained by model (Pm2) are off by almost 100
%.
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Figure 10: Number of pedestrians in jams as a function of time in s in experiment (A).
Experimental values are displayed with the thick red line, while simulation results for
models (Pm1), (Pm2) and (Pm3) are displayed with dotted green, blue and magenta
lines respectively. Again, the values provided by models (Pm1) and (Pm3) are within the
uncertainties of the measurements, with a slight tendency to overestimate this number.
By contrast, model (Pm2) has too few pedestrians in jams.
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(c) Parameters (Pm3).

Figure 11: Positions of the pedestrians (in radians, on the circle) as functions of time
(in s) in experiment (B). Experimental data (left), model (Pm1) (middle) and model
(Pm3) (right). Portions of a pedestrian trajectory corresponding to a jam are highlighted
in red. During the time interval between 0 and 10s (left-hand side of the vertical bar) the
delay system is initialized by the experimental data. Parameter α was set to 0.3 in both
(Pm1) and (Pm3). Here model (Pm1) provides a better match than model (Pm3).
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Figure 12: Positions of the pedestrians (in radians, on the circle) as functions of time
(in s) in experiment (C). Experimental data (left), model (Pm1) (middle) and model
(Pm3) (right). During the time interval between 0 and 10s (left-hand side of the vertical
bar) the delay system is initialized by the experimental data. Parameter α was set to 0.3
in both (Pm1) and (Pm3). Here both models lead to slightly too fast pedestrian velocities.
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In our simulation, the number of predecessors was equal to 25 % of the total number
of pedestrians involved in the experiment and about 30 % of the reaction of a given
pedestrian was triggered by this relaxation and 70 % by the leader following behavior
itself.

Our finding is that the model that matches the experimental results with the highest
degree of accuracy is model (Pm1), i.e. the model where the power law dependences of τ
and C are different at low and high local densities. This model was carefully assessed by
investigating the ability of the simulation to reproduce large-scale dynamical features of
the experimental data such as jam formation and dynamics.

According to this model, the leader-following behavior of the pedestrians is different
at low and high local densities. Refering to (4.3), we notice that τ decreases like 1/

√
ρ as

long as the density is lower than a crossover value of about 1.2 ped m−1 and then stays
approximately constant. A possible interpretation of this behavior is that pedestrians
become increasingly aware of their leader’s behavior when their distance to him decreases.
But once this distance exceeds a certain value, there is no further decay of this time-delay
as information processing and decision-making take an incompressible amount of time.
In a similar way, the reaction constant increases almost linearly with the density at low
density but saturates to a constant once the crossover value of the density if reached.

It is instructive to remember that the worst model has been shown to be model (Pm2),
where τ and C are given by a single power law throughout the whole range of values of
the local density. Even if, in that case, the decay of τ and the increase of C at small
density is less pronounced that in model (Pm1), it seems that keeping the same law above
the critical density leads to a significant detoriation of the result. Therefore, it seems
essential to take into account the saturation of the time delay and response intensity at
large densities. This is confirmed by the fact that model (Pm3) which keeps τ and C
constant and independent of ρ performs better than (Pm2), as if the request that τ and
C should be constant at large density overrid the necessity of making them ρ-dependent
at low density. To some extent, the model with constant τ and C is the simplest, and
offers a very attractive cost-benefit ratio for large-scale simulations. In [20], it has been
shown to compare favorably to other models in the literature such as [12, 29].

To assess the model, we compared the simulated jam dynamics with the experimentally
observed one. This assessment methodology is restricted to the large average density
case. Indeed, in the small average density case, no jam is formed. In this case, different
assessment methods need to be developed. During calibration, we observed that, in the
low density case, there were significantly less samples which were compliant with the model
than in the large density case. This seems to indicate that the Follow-the-Leader model
alone is unable to correctly account for the low-density observations. New theoretical
models need to be developped in that case.

This model, either in the form (Pm3), or in the form (Pm1), can be used as a building
block for two-dimensional models. Indeed, it can account for the speed adjustments of the
pedestrians due to the presence of other pedestrians walking in front of them in the same
direction. It can be complemented by a model describing how the direction of motion
is changed to account for the presence of obstacles or other pedestrians moving in the
opposite direction, in the spirit of [9, 10, 23]. Such an approach has been already outlined
in [20] and will be pursued in the future.
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Appendix

The pre-processing of the experimental data depends on several parameters, namely the
cutoff frequency fc, the window width ww, the model parameter γ and the correlation
threshold ǫt below which a sample (pedestrian, time window) is discarded. We study
the influence of each of these parameters on the retrieved time delay τ and constant C.
The data are gathered by local density and the influence of each parameter is studied by
letting the other ones fixed.

Influence of the parameter fc

To test the effect of the parameter fc, we process the data of all experiments with the
following values: ǫt = 0.6, ww = 6.67 s, γ = −1. The cutoff frequency fc is given the
following values fc ∈ {0.2, 0.5, 1, 1.2} Hz. The medians of the estimated values of τ and
C over the set of samples consisting of (pedestrian, time window) pairs ranging through
the whole set of experiments are presented in Fig. 13 as functions of the local density ρ
(see section 4.1.3 for the definition of the local density).
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Figure 13: Median of estimated delay τ in s (left) and constant C in m1/2s−1 (right) over
the set of samples consisting of (pedestrian, time window) pairs ranging through the whole
set of experiments as functions of the local density ρ in ped m−1, for different values of
the cutoff frequency fc. The curves were obtained with fc ∈ {0.2, 0.5, 1, 1.2} Hz and are
respectively displayed in blue, red, green and black, while the other parameters ǫt = 0.6,
ww = 6.67s, γ = −1 are fixed.

From Fig. 13, we notice that as fc increases, the median of τ decreases while the
median of C increases. The medians of τ and C are only slightly influenced by fc when
fc ≥ 1 Hz and in this range of cut-off frequencies, the dependence of these medians with
respect to the local density ρ is mild. By contrast, the medians of τ and C depend much
more strongly on fc for fc ≤ 1 Hz and their dependence on the local density if stiffer.
We have also noticed (not illustrated by a figure) that the percentage of compliant data
increases as fc decreases until reaching the value fc = 0.2 Hz. In this last case, the time-
delay found from the calibration is too large for the interval in which it is searched for and
the percentage of compliant data then drops dramatically. Given these observations, we
choose a cut-off frequency fc = 0.5 Hz as it roughly corresponds to the stepping frequency
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of the pedestrians. This choice allows us to retain all phenomena occuring at a frequency
larger that 0.5 Hz.

Influence of the window width ww

To test the effect of the parameter ww, we process the data of all experiments with ǫt = 0.6,
fc = 0.5 Hz, γ = −1 and ww is given the following values: ww ∈ {5, 6.67, 8} s. The median
and quartiles of the estimated τ and C over the set of samples consisting of (pedestrian,
time window) pairs ranging through the whole set of experiments are presented in Fig.
14 (left and right respectively) as functions of the local density ρ (see section 4.1.3 for the
definition of the local density).

0.5 1 1.5 2 2.5
0.4

0.6

0.8

1

1.2

1.4

local ρ

τ

 

 

ww=5
ww=6.67
ww=8

0.5 1 1.5 2 2.5

0.5

1

1.5

local ρ

C

 

 

ww=5
ww=6.67
ww=8

Figure 14: Median and quartiles of estimated delay τ in s (left) and constant C in m1/2s−1

(right) over the set of samples consisting of (pedestrian, time window) pairs ranging
through the whole set of experiments as functions of the local density ρ in ped m−1,
for different values of the window width ww. The different curves were obtained with
ww = 5 s, 6.67 s, 8 s and are respectively displayed in blue, red and green while the other
parameters ǫt = 0.6, fc = 0.5 Hz, γ = −1 are fixed. Medians are displayed in solid lines
while quartiles are shown in dotted lines of the corresponding color.

The estimated values of of τ , C are only very midly dependent of the window width.
The variations of τ as a function of ww are of the order of 2.5 %, and the variations of C
are of the order of 5.3 %. The distributions of τ and C are slightly more concentrated as
the window length ww becomes larger (as shown by the interval between two quartiles be-
coming narrower) but this effect is really small. These findings show that the dependence
of the results on the window width is negligible.

Influence of the model parameter γ

To test the effect of the model parameter γ, we process the data of all experiments
with ǫt = 0.6, ww = 6.67 s, fc = 0.5 Hz, and γ is given the following values: γ ∈
{−1, −0.5, 0, 1}. The median of the estimated delay τ over the set of samples consisting
of (pedestrian, time window) pairs ranging through the whole set of experiments are
presented in Fig. 15 as a function of the local density ρ (see section 4.1.3 for the definition
of the local density).
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Figure 15: Median of estimated delay τ over the set of samples consisting of (pedestrian,
time window) pairs ranging through the whole set of experiments for different values of
the parameter γ. The different curves are obtained with the values γ = −1, −0.5, 0, 1
and represented in blue, red, green and black respectively, while the other parameters
ǫt = 0.6, ww = 6.67 s, fc = 0.5 Hz are fixed.

From Fig. 15, it can be observed that there is no significant dependence of the values
of the median of the time delay τ on the model parameter γ. Indeed, the variations
of the median of τ are of the order 2.6 %, which is almost negligible. The values of C
are actually of different physical dimensions for different values of γ, which makes their
simple comparison not meaningful. Since all cases seem to perform well, we keep the
value γ = −1 when we deal with model (Pm3) (i.e. when we deal with local-density
independent values of τ and C).

Influence of the correlation threshold ǫt

We remind that the correlation threshold is used to discard samples which are not com-
pliant with the model. For a given sample consisting of a pair (pedestrian, time window),
we compute the correlation parameter (see section 3.3) and if this parameter is less that
ǫt, we discard this sample as being ’not compliant with the model’. To test the effect of
this parameter, we process all experiments with ww = 6.67 s, fc = 0.5 Hz, γ = −1. We
test the following values: ǫt ∈ {0.6, 0.7, 0.8}. The median and quartile of the estimated
delay τ and the median of the estimated constant C over the set of samples consisting
of (pedestrian, time window) pairs ranging through the whole set of experiments are pre-
sented in Fig. 16 (left and right respectively) as functions of the local density ρ (see
section 4.1.3 for the definition of the local density).

We observe that the parameter ǫt has little influence on the medians and quartiles of
the estimated values of τ and on the medians of the estimated values of C. The relative
variations of τ are of the order of 1.6 %, and the relative variations of C are of the order
of 5.5 %.
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Figure 16: Median and quartile of the estimated delay τ (left) and median of the estimated
constant C (right) over the set of samples consisting of (pedestrian, time window) pairs
ranging through the whole set of experiments, for different values of the threshold ǫt.
The curves were obtained with ǫt = 0.6, 0.7, 0.8 and correspond to the blue, red and
green curves respectively, while the other parameters are fixed to the values ww = 6.67 s,
fc = 0.5 Hz, γ = −1. Medians are displayed in solid lines while quartiles are shown in
dotted lines of the corresponding color.
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