128 research outputs found

    The use of polymorphic state modifiers in solid lipid microparticles: The role of structural modifications on drug release performance

    Get PDF
    This study investigates the correlation between the structural and release properties of solid lipid microparticles (MPs) of tristearin containing 5 % w/w of four different liquid additives used as crystal modifiers: isopropyl myristate (IM), ethyl oleate (EO), oleic acid (OA) and medium chain triglycerides (MCT). All additives accelerated the conversion of the unstable α-form of tristearin, formed after the MPs manufacturing, to the stable β-polymorph and the transformation was completed within 24 h (for IM and EO) or 48 h (for OA and MCT). The kinetic of polymorphic transition at 25 ◦C was investigated by simultaneous synchrotron SAXS/WAXS and DSC analysis after melting and subsequent cooling of the lipid mixture. After crystallization in the α-phase, additives accelerate the solid-solid phase transformation to β-tristearin. SAXS data showed that two types of structural modifications occurred on MPs during storage: compaction of the crystal packing (slight decrease in lamellar thickness) and crystal growth (increased number of stacked lipid lamellae). The release behavior of a model hydrophilic drug (caffeine) at two different amounts (15 % and 30 %) from MPs was studied in water and biorelevant media simulated the gastric and intestinal environment. It was particularly significant that the introduction of IM, EO and MCT were able to prolong the drug release in water, passing from a diffusion-based Higuchi kinetics to a perfect zero-order kinetic. Moreover, the overall release profiles were higher in biorelevant media, where erosion/digestion of MPs was observed. After 6 months, a moderate but statistically significant change in release profile was observed for the MPs with IM and EO, which can be correlated with the timedependent structural alterations (i.e. larger average crystallite size) of these formulations; while MPs with OA or MCT displayed stable release profiles. These findings help to understand the correlation between release behavior, polymorphism and supramolecular-level structural modification of lipid formulations containing crystal modifiers

    The unseen evidence of reduced Ionicity. The elephant in (the) room temperature ionic liquids

    Get PDF
    The unambiguous quantification of the proton transfer in Protic Ionic Liquids (PILs) and its differentiation from the concept of ionicity are still unsolved questions. Albeit researchers awfully quickly treat them as synonyms, the two concepts are intrinsically different and imply a dramatic modification in the expected chemical and physical properties of a PIL. Some attempts have been made to shed light on this discrimination, but single-technique-based approaches fail in giving a clear answer. Aiming at definitively figuring out the differentiation between proton transfer and ionicity, we performed a multi-technique analysis (NMR, Raman, IR, thermal and electrochemical analyses, among others). Indeed, thermal and spectroscopic analyses are employed to determine the acid strength's role in ions' complete formation. To overcome the ambiguity between ionicity and formation degree, we introduce a new paradigm where Reduced Ionicity accounts for both the quantities mentioned above. The reduced ionicity directly affects the thermal stability, the phase behavior, and the spectroscopic observations, resulting in particular features in NMR and vibrational spectra. The combination of physical-chemical analyses and Pulsed-Gradient Spin-Echo (PGSE) NMR allows determining the reduced ionicity (and not the ionicity, as reported so far) of the investigated systems. In this context, being the proton transfer not quantitatively accessible directly, the reduced ionicity of a reference series of triethylamine-based PILs is investigated through transport properties as a function of temperature. Our findings point towards a substantial dependence of the reduced ionicity by the acid strength and the anion's coordination power. Furthermore, some interesting insights about the proton transfer are obtained, combining all the findings collected

    From Bitter to Sweet: a preliminary study towards a patient-friendly Praziquantel dosage form

    Get PDF
    Praziquantel (PZQ) is an antihelmintic drug used worldwide against Schistosomiasis, despite its low solubility, bioavailability and the disgusting taste. This research represents a preliminary screening of 6 selected sweeteners in terms of their aptitude to be ground with PZQ, towards the development of a patient-friendly dosage form, capable of overcoming both dissolution and taste drawbacks. A vibrational mill was used to process equimolar mixtures of PZQ and each sweetener, and the dispersions were characterized by means of Differential Scanning Calorimetry, Powder X-ray Diffraction, Fourier Transform-Infrared Spectrometry, water solubility and Intrinsic Dissolution Rate. Physical stability of the coground systems was checked over a period of 1 year. The grinding for a short period (such as 30 min) of PZQ and selected sweeteners led to several very interesting products, with prevalent amorphous character, enhanced solubility and Intrinsic Dissolution Rate comparing to the raw drug. Peculiar behavior was found in the case of xylitol:PZQ ground mixtures where the appearance of traces of PZQ anhydrous Form B was noticed. Therefore, this research highlights the possibility of using binary premixes of PZQ and sweeteners in order to obtain an increase in the biopharmaceutical and organoleptic properties of the anthelmintic drug, underlining also the need for a careful screening of sweetener to design a PZQ patient-friendly dosage form

    From Bitter to Sweet: a preliminary study towards a patient-friendly Praziquantel dosage form

    Get PDF
    Praziquantel (PZQ) is an antihelmintic drug used worldwide against Schistosomiasis, despite its low solubility, bioavailability and the disgusting taste. This research represents a preliminary screening of 6 selected sweeteners in terms of their aptitude to be ground with PZQ, towards the development of a patient-friendly dosage form, capable of overcoming both dissolution and taste drawbacks. A vibrational mill was used to process equimolar mixtures of PZQ and each sweetener, and the dispersions were characterized by means of Differential Scanning Calorimetry, Powder X-ray Diffraction, Fourier Transform-Infrared Spectrometry, water solubility and Intrinsic Dissolution Rate. Physical stability of the coground systems was checked over a period of 1 year. The grinding for a short period (such as 30 min) of PZQ and selected sweeteners led to several very interesting products, with prevalent amorphous character, enhanced solubility and Intrinsic Dissolution Rate comparing to the raw drug. Peculiar behavior was found in the case of xylitol:PZQ ground mixtures where the appearance of traces of PZQ anhydrous Form B was noticed. Therefore, this research highlights the possibility of using binary premixes of PZQ and sweeteners in order to obtain an increase in the biopharmaceutical and organoleptic properties of the anthelmintic drug, underlining also the need for a careful screening of sweetener to design a PZQ patient-friendly dosage form

    Ground Calcium Carbonate as a Low Cost and Biosafety Excipient for Solubility and Dissolution Improvement of Praziquantel

    Get PDF
    Calcium carbonate is an abundant mineral with several advantages to be a successful carrier to improve oral bioavailability of poorly water-soluble drugs, such as praziquantel. Praziquantel is an antiparasitic drug classified in group II of the Biopharmaceutical Classification System hence characterized by high-permeability and low-solubility. Therefore, the dissolution rate is the limiting factor for the gastrointestinal absorption that contributes to the low bioavailability. Consequently, the therapeutic dose of the praziquantel must be high and big tablets and capsules are required, which are difficult to swallow, especially for pediatric and elderly patients. Mixtures of praziquantel and calcium carbonate using solid-solid physical mixtures and solid dispersions were prepared and characterized using several techniques (X-ray diffraction differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, laser diffraction, Fourier transform infrared and Raman spectroscopies). Solubility of these formulations evidenced that the solubility of praziquantel-calcium carbonate interaction product increased in physiological media. In vitro dissolution tests showed that the interaction product increased the dissolution rate of the drug in acidic medium. Theoretical models were studied to understand this experimental behavior. Cytotoxicity and cell cycle studies were performed, showing that praziquantel-calcium carbonate physical mixture and interaction product were biocompatible with the HTC116 cells, because it did not produce a decrease in cell viability or alterations in the cell cycle.We also acknowledge for financial support the MINECO, for projects FIS2016-77692-C2-2-P and CGL2016-80833-R, and the Andalusian government, for project RNM1897

    Spray-congealed Solid Lipid Microparticles as a new tool for the controlled release of Bisphosphonates from a Calcium Phosphate Bone cement

    Get PDF
    The aim of this work was to develop an innovative drug delivery system potentially useful for the local delivery of Bisphosphonates to bone tissue. We propose the use of Solid Lipid Microparticles (MPs), up to now mainly used for oral and topical drug delivery, as carrier for bisphosphonates due to the favourable biocompatibility and lower toxicity of the lipids compared with many polymers. The delivery platform consisted of a biomimetic \u3b1-tricalcium phosphate-gelatin cement (CPC) enriched with alendronate loaded MPs (MPs-AL) produced by the spray congealing technology. Alendronate direct addition to cement composition is limited since Alendronate is able to sequester calcium from calcium phosphates, thus preventing the setting of the cements. At variance, this approach permitted to load a relatively high amount of the drug on the CPC and allowed the controlled release of the highly water soluble alendronate. A Design of Experiment (DoE) was employed for the screening of the effects of the formulation variables related to the presence of unloaded microparticle (MPs) on the cement most important mechanical properties. Then, MPs loaded with 10 % w/w of alendronate were produced using five different carriers (Stearic Acid, Stearilic Alcohol, Cutina HR, Tristearin and Precirol ATO5). All MPs-AL exhibited a spherical shape, encapsulation efficiency higher than 90% and prevalent particle size ranging from 100-150 micron. Solid state characterization (DSC, HSM and X-ray powder diffraction) demonstrated that encapsulation of alendronate into MPs did not alter its crystal structure. MPs-AL addition to the cement provoked a modest lengthening of the setting times and of the hardening reaction leading to the complete transformation of \u3b1-tricalcium phosphate into calcium-deficient hydroxyapatite, without significantly affect the cement mechanical properties. Moreover, the results of in vitro AL release study performed on cements enriched with MPs-AL showed that the system allows a controlled release of the drug over time

    Conformational polymorphic changes in the crystal structure of the chiral antiparasitic drug praziquantel and interactions with calcium carbonate

    Get PDF
    Praziquantel is an antiparasitic drug used for decades. Currently, the praziquantel commercial preparation is a racemic mixture, in which only the levo-enantiomer possesses anthelmintic activity. The knowledge of its properties in the solid state and other chemical-physical properties is necessary for improving its efficacy and applications. Drug solid dispersions were prepared with calcium carbonate at 1:5 drug to excipient weight ratio by solvent evaporation method. Then, the modification of the crystal structure of the racemic polymorph of praziquantel in presence of calcium carbonate has been studied by means of several analytical techniques (DSC,TGA, XRD, SEM, FTIR, Raman spectroscopy and chiral liquid chromatography). This study has been completed with atomistic calculations based on empirical interatomic force fields and quantum mechanics methods applied to the crystal structure of praziquantel and of intermolecular interactions. The results evidenced that calcium carbonate provoked a conformational change in the praziquantel molecule yielding the formation of different polymorphs of praziquantel crystal. These alterations were not observed replacing calcium carbonate with colloidal silica as excipient in the solid dispersion

    Controlling Volatility and Nonvolatility of Memristive Devices by Sn Alloying

    Get PDF
    Memristive devices have attracted significant attention due to their downscaling potential, low power operation, and fast switching performance. Their inherent properties make them suitable for emerging applications such as neuromorphic computing, in-memory computing, and reservoir computing. However, the different applications demand either volatile or nonvolatile operation. In this study, we demonstrate how compliance current and specific material choices can be used to control the volatility and nonvolatility of memristive devices. Especially, by mixing different materials in the active electrode, we gain additional design parameters that allow us to tune the devices for different applications. We found that alloying Ag with Sn stabilizes the nonvolatile retention regime in a reproducible manner. Additionally, our alloying approach improves the reliability, endurance, and uniformity of the devices. We attribute these advances to stabilization of the filament inside the switching medium by the inclusion of Sn in the filament structure. These advantageous properties of alloying were found by investigating a choice of six electrode materials (Ag, Cu, AgCu-1, AgCu-2, AgSn-1, AgSn-2) and three switching layers (SiO2_2, Al2_2O3_3, HfO2_2)

    pH and Reactive Oxygen Species-Sequential Responsive Nano-in-Micro Composite For Targeted Therapy of Inflammatory Bowel Disease

    Get PDF
    Oxidative stress and abnormally high levels of reactive oxygen species (ROS) play an essential role in the pathogenesis and progression of inflammatory bowel disease (IBD). Oxidation‐responsive nanoparticles (NPs) are formulated from a phenylboronic esters‐modified dextran (OxiDEX) that degrades selectively in response to hydrogen peroxide (H2O2). OxiDEX NPs are coated with chitosan and encapsulated in a pH‐sensitive polymer to produce nano‐in‐micro composites. The microparticles are spherical with homogeneous particle size (53 ± 3 µm) and maintain integrity at acidic pH, preventing the premature release of the NPs in gastric conditions. The degradation of NPs is highly responsive to the level of H2O2, and the release of the drug is sustained in the presence of physiologically relevant H2O2 concentrations. The presence of chitosan on the particles surface significantly enhances NPs stability in intestinal pH and their adhesion on the intestinal mucosa. Compared to a traditional enteric formulation, this formulation shows tenfold decreased drug permeability across C2BBe1/HT29‐MTX cell monolayer, implying that lower amount of drug would be absorbed to the blood stream and, therefore, limiting the undesired systemic side effects. Based on these results, a successful nano‐in‐micro composite for targeted therapy of IBD is obtained by combination of the responsiveness to pH and ROS.Peer reviewe

    Ceftolozane/Tazobactam for Treatment of Severe ESBL-Producing Enterobacterales Infections: A Multicenter Nationwide Clinical Experience (CEFTABUSE II Study)

    Get PDF
    Background. Few data are reported in the literature about the outcome of patients with severe extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) infections treated with ceftolozane/tazobactam (C/T), in empiric or definitive therapy.Methods. A multicenter retrospective study was performed in Italy (June 2016-June 2019). Successful clinical outcome was defined as complete resolution of clinical signs/symptoms related to ESBL-E infection and lack of microbiological evidence of infection. The primary end point was to identify predictors of clinical failure of C/T therapy.Results. C/T treatment was documented in 153 patients: pneumonia was the most common diagnosis (n = 46, 30%), followed by 34 cases of complicated urinary tract infections (22.2%). Septic shock was observed in 42 (27.5%) patients. C/T was used as empiric therapy in 46 (30%) patients and as monotherapy in 127 (83%) patients. Favorable clinical outcome was observed in 128 (83.7%) patients; 25 patients were considered to have failed C/T therapy. Overall, 30-day mortality was reported for 15 (9.8%) patients. At multivariate analysis, Charlson comorbidity index >4 (odds ratio [OR], 2.3; 95% confidence interval [CI], 1.9-3.5; P = .02), septic shock (OR, 6.2; 95% CI, 3.8-7.9; P < .001), and continuous renal replacement therapy (OR, 3.1; 95% CI, 1.9-5.3; P = .001) were independently associated with clinical failure, whereas empiric therapy displaying in vitro activity (OR, 0.12; 95% CI, 0.01-0.34; P < .001) and adequate source control of infection (OR, 0.42; 95% CI, 0.14-0.55; P < .001) were associated with clinical success.Conclusions. Data show that C/T could be a valid option in empiric and/or targeted therapy in patients with severe infections caused by ESBL-producing Enterobacterales. Clinicians should be aware of the risk of clinical failure with standard-dose C/T therapy in septic patients receiving CRRT
    corecore