141 research outputs found

    Control of human endometrial stromal cell motility by PDGF-BB, HB-EGF and trophoblast-secreted factors

    Get PDF
    Human implantation involves extensive tissue remodeling at the fetal-maternal interface. It is becoming increasingly evident that not only trophoblast, but also decidualizing endometrial stromal cells are inherently motile and invasive, and likely contribute to the highly dynamic processes at the implantation site. The present study was undertaken to further characterize the mechanisms involved in the regulation of endometrial stromal cell motility and to identify trophoblast-derived factors that modulate migration. Among local growth factors known to be present at the time of implantation, heparin-binding epidermal growth factor-like growth factor (HB-EGF) triggered chemotaxis (directed locomotion), whereas platelet-derived growth factor (PDGF)-BB elicited both chemotaxis and chemokinesis (non-directed locomotion) of endometrial stromal cells. Supernatants of the trophoblast cell line AC-1M88 and of first trimester villous explant cultures stimulated chemotaxis but not chemokinesis. Proteome profiling for cytokines and angiogenesis factors revealed neither PDGF-BB nor HB-EGF in conditioned media from trophoblast cells or villous explants, while placental growth factor, vascular endothelial growth factor and PDGF-AA were identified as prominent secretory products. Among these, only PDGF-AA triggered endometrial stromal cell chemotaxis. Neutralization of PDGF-AA in trophoblast conditioned media, however, did not diminish chemoattractant activity, suggesting the presence of additional trophoblast-derived chemotactic factors. Pathway inhibitor studies revealed ERK1/2, PI3 kinase/Akt and p38 signaling as relevant for chemotactic motility, whereas chemokinesis depended primarily on PI3 kinase/Akt activation. Both chemotaxis and chemokinesis were stimulated upon inhibition of Rho-associated, coiled-coil containing protein kinase. The chemotactic response to trophoblast secretions was not blunted by inhibition of isolated signaling cascades, indicating activation of overlapping pathways in trophoblast-endometrial communication. In conclusion, trophoblast signals attract endometrial stromal cells, while PDGF-BB and HB-EGF, although not identified as trophoblast-derived, are local growth factors that may serve to fine-tune directed and non-directed migration at the implantation site

    Clinical trial of laronidase in Hurler syndrome after hematopoietic cell transplantation.

    Get PDF
    BackgroundMucopolysaccharidosis I (MPS IH) is a lysosomal storage disease treated with hematopoietic cell transplantation (HCT) because it stabilizes cognitive deterioration, but is insufficient to alleviate all somatic manifestations. Intravenous laronidase improves somatic burden in attenuated MPS I. It is unknown whether laronidase can improve somatic disease following HCT in MPS IH. The objective of this study was to evaluate the effects of laronidase on somatic outcomes of patients with MPS IH previously treated with HCT.MethodsThis 2-year open-label pilot study of laronidase included ten patients (age 5-13 years) who were at least 2 years post-HCT and donor engrafted. Outcomes were assessed semi-annually and compared to historic controls.ResultsThe two youngest participants had a statistically significant improvement in growth compared to controls. Development of persistent high-titer anti-drug antibodies (ADA) was associated with poorer 6-min walk test (6MWT) performance; when patients with high ADA titers were excluded, there was a significant improvement in the 6MWT in the remaining seven patients.ConclusionsLaronidase seemed to improve growth in participants <8 years old, and 6MWT performance in participants without ADA. Given the small number of patients treated in this pilot study, additional study is needed before definitive conclusions can be made

    Inhibition of Histone Deacetylase Activity in Human Endometrial Stromal Cells Promotes Extracellular Matrix Remodelling and Limits Embryo Invasion

    Get PDF
    Invasion of the trophoblast into the maternal decidua is regulated by both the trophoectoderm and the endometrial stroma, and entails the action of tissue remodeling enzymes. Trophoblast invasion requires the action of metalloproteinases (MMPs) to degrade extracellular matrix (ECM) proteins and in turn, decidual cells express tissue inhibitors of MMPs (TIMPs). The balance between these promoting and restraining factors is a key event for the successful outcome of pregnancy. Gene expression is post-transcriptionally regulated by histone deacetylases (HDACs) that unpacks condensed chromatin activating gene expression. In this study we analyze the effect of histone acetylation on the expression of tissue remodeling enzymes and activity of human endometrial stromal cells (hESCs) related to trophoblast invasion control. Treatment of hESCs with the HDAC inhibitor trichostatin A (TSA) increased the expression of TIMP-1 and TIMP-3 while decreased MMP-2, MMP-9 and uPA and have an inhibitory effect on trophoblast invasion. Moreover, histone acetylation is detected at the promoters of TIMP-1 and TIMP-3 genes in TSA-treated. In addition, in an in vitro decidualized hESCs model, the increase of TIMP-1 and TIMP-3 expression is associated with histone acetylation at the promoters of these genes. Our results demonstrate that histone acetylation disrupt the balance of ECM modulators provoking a restrain of trophoblast invasion. These findings are important as an epigenetic mechanism that can be used to control trophoblast invasion

    Diagnosis and treatment trends in mucopolysaccharidosis I: findings from the MPS I Registry

    Get PDF
    Our objective was to assess how the diagnosis and treatment of mucopolysaccharidosis I (MPS I) have changed over time. We used data from 891 patients in the MPS I Registry, an international observational database, to analyze ages at symptom onset, diagnosis, treatment initiation, and treatment allocation (hematopoietic stem cell transplantation, enzyme replacement therapy with laronidase, both, or neither) over time for all disease phenotypes (Hurler, Hurler–Scheie, and Scheie syndromes). The interval between diagnosis and treatment has become shorter since laronidase became available in 2003 (gap during 2006–2009: Hurler—0.2 year, Hurler–Scheie—0.5 year, Scheie—1.4 years). However, the age at diagnosis has not decreased for any MPS I phenotype over time, and the interval between symptom onset and treatment initiation remains substantial for both Hurler–Scheie and Scheie patients (gap during 2006–2009, 2.42 and 6.71 years, respectively). Among transplanted patients, an increasing proportion received hematopoietic stem cells from cord blood (34 out of 64 patients by 2009) and was also treated with laronidase (42 out of 45 patients by 2009). Conclusions: Despite the availability of laronidase since 2003, the diagnosis of MPS I is still substantially delayed for patients with Hurler–Scheie and Scheie phenotypes, which can lead to a sub-optimal treatment outcome. Increased awareness of MPS I signs and symptoms by primary care providers and pediatric subspecialists is crucial to initiate early treatment and to improve the quality of life of MPS I patients

    Opening options for material transfer.

    Get PDF
    UNLABELLED: The Open Material Transfer Agreement is a material-transfer agreement that enables broader sharing and use of biological materials by biotechnology practitioners working within the practical realities of technology transfer. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nbt.4263) contains supplementary material, which is available to authorized users

    Proapoptotic genes BAX and CD40L are predictors of survival in transitional cell carcinoma of the bladder

    Get PDF
    The purpose of the study was to investigate the effects of expression of a range of genes involved in apoptosis on outcome in bladder cancer. Immunohistochemistry was used to examine expression of BCL2, BAX, P53, CD40 and CD40L in archival tissues of patients included in various treatment trials for transitional cell carcinoma (TCC) of the bladder. Data were collected on 94 patients who first presented with either invasive or superficial bladder cancer. Median follow-up for alive patients was 83 months (m) (range 12-195 m). Median survival was 80 m (95% CI=56-128 m). Median survivals for the various markers were as follows: BAX-positive patients 110 m vs BAX-negative patients 18 m (P=0.0002); CD40L-positive patients 95 m vs CD40L-negative patients 45 m (P=0.04); BCL2-positive patients 44 m and BCL2-negative patients 74 m, (P=0.64); CD40-positive patients 110 m and CD40 negative patients 45 m (P=0.12); and P53 positive patients 80 m and P53 negative patients 45 m (P=0.58). In conclusion, it was seen that overexpressions of BAX and CD40L are prognostic of better survival in TCC of the bladder. Our results also raise the possibility of the future development of CD40- and CD40 ligand-based immunotherapy for bladder cancer. This study links proapoptotic and antiapoptotic markers to overall survival

    The Prevalence and Regulation of Antisense Transcripts in Schizosaccharomyces pombe

    Get PDF
    A strand-specific transcriptome sequencing strategy, directional ligation sequencing or DeLi-seq, was employed to profile antisense transcriptome of Schizosaccharomyces pombe. Under both normal and heat shock conditions, we found that polyadenylated antisense transcripts are broadly expressed while distinct expression patterns were observed for protein-coding and non-coding loci. Dominant antisense expression is enriched in protein-coding genes involved in meiosis or stress response pathways. Detailed analyses further suggest that antisense transcripts are independently regulated with respect to their sense transcripts, and diverse mechanisms might be potentially involved in the biogenesis and degradation of antisense RNAs. Taken together, antisense transcription may have profound impacts on global gene regulation in S. pombe

    A redox state-dictated signalling pathway deciphers the malignant cell specificity of CD40-mediated apoptosis

    Get PDF
    CD40, a member of the tumour necrosis factor receptor (TNFR) superfamily, has the capacity to cause extensive apoptosis in carcinoma cells, while sparing normal epithelial cells. Yet, apoptosis is only achieved by membrane-presented CD40 ligand (mCD40L), as soluble receptor agonists are but weakly pro-apoptotic. Here, for the first time we have identified the precise signalling cascade underpinning mCD40L-mediated death as involving sequential TRAF3 stabilisation, ASK1 phosphorylation, MKK4 (but not MKK7) activation and JNK/AP-1 induction, leading to a Bak- and Bax-dependent mitochondrial apoptosis pathway. TRAF3 is central in the activation of the NADPH oxidase (Nox)-2 component p40phox and the elevation of reactive oxygen species (ROS) is essential in apoptosis. Strikingly, CD40 activation resulted in down-regulation of Thioredoxin (Trx)-1 to permit ASK1 activation and apoptosis. Although soluble receptor agonist alone could not induce death, combinatorial treatment incorporating soluble CD40 agonist and pharmacological inhibition of Trx-1 was functionally equivalent to the signal triggered by mCD40L. Finally, we demonstrate using normal, ‘para-malignant’ and tumour-derived cells that progression to malignant transformation is associated with increase in oxidative stress in epithelial cells, which coincides with increased susceptibility to CD40 killing, while in normal cells CD40 signalling is cytoprotective. Our studies have revealed the molecular nature of the tumour specificity of CD40 signalling and explained the differences in pro-apoptotic potential between soluble and membrane-bound CD40 agonists. Equally importantly, by exploiting a unique epithelial culture system that allowed us to monitor alterations in the redox-state of epithelial cells at different stages of malignant transformation, our study reveals how pro-apoptotic signals can elevate ROS past a previously hypothesised ‘lethal pro-apoptotic threshold’ to induce death; an observation that is both of fundamental importance and carries implications for cancer therap

    Manipulation of Costimulatory Molecules by Intracellular Pathogens: Veni, Vidi, Vici!!

    Get PDF
    Some of the most successful pathogens of human, such as Mycobacterium tuberculosis (Mtb), HIV, and Leishmania donovani not only establish chronic infections but also remain a grave global threat. These pathogens have developed innovative strategies to evade immune responses such as antigenic shift and drift, interference with antigen processing/presentation, subversion of phagocytosis, induction of immune regulatory pathways, and manipulation of the costimulatory molecules. Costimulatory molecules expressed on the surface of various cells play a decisive role in the initiation and sustenance of immunity. Exploitation of the “code of conduct” of costimulation pathways provides evolutionary incentive to the pathogens and thereby abates the functioning of the immune system. Here we review how Mtb, HIV, Leishmania sp., and other pathogens manipulate costimulatory molecules to establish chronic infection. Impairment by pathogens in the signaling events delivered by costimulatory molecules may be responsible for defective T-cell responses; consequently organisms grow unhindered in the host cells. This review summarizes the convergent devices that pathogens employ to tune and tame the immune system using costimulatory molecules. Studying host-pathogen interaction in context with costimulatory signals may unveil the molecular mechanism that will help in understanding the survival/death of the pathogens. We emphasize that the very same pathways can potentially be exploited to develop immunotherapeutic strategies to eliminate intracellular pathogens

    Identification of O-mannosylated Virulence Factors in Ustilago maydis

    Get PDF
    The O-mannosyltransferase Pmt4 has emerged as crucial for fungal virulence in the animal pathogens Candida albicans or Cryptococcus neoformans as well as in the phytopathogenic fungus Ustilago maydis. Pmt4 O-mannosylates specific target proteins at the Endoplasmic Reticulum. Therefore a deficient O-mannosylation of these target proteins must be responsible for the loss of pathogenicity in pmt4 mutants. Taking advantage of the characteristics described for Pmt4 substrates in Saccharomyces cerevisiae, we performed a proteome-wide bioinformatic approach to identify putative Pmt4 targets in the corn smut fungus U. maydis and validated Pmt4-mediated glycosylation of candidate proteins by electrophoretic mobility shift assays. We found that the signalling mucin Msb2, which regulates appressorium differentiation upstream of the pathogenicity-related MAP kinase cascade, is O-mannosylated by Pmt4. The epistatic relationship of pmt4 and msb2 showed that both are likely to act in the same pathway. Furthermore, constitutive activation of the MAP kinase cascade restored appressorium development in pmt4 mutants, suggesting that during the initial phase of infection the failure to O-mannosylate Msb2 is responsible for the virulence defect of pmt4 mutants. On the other hand we demonstrate that during later stages of pathogenic development Pmt4 affects virulence independently of Msb2, probably by modifying secreted effector proteins. Pit1, a protein required for fungal spreading inside the infected leaf, was also identified as a Pmt4 target. Thus, O-mannosylation of different target proteins affects various stages of pathogenic development in U. maydis
    corecore