1,261 research outputs found

    The Restricted Stochastic User Equilibrium with Threshold model: Large-scale application and parameter testing

    Get PDF
    This paper presents the application and calibration of the recently proposed Restricted Stochastic User Equilibrium with Threshold model (RSUET) to a large-scale case-study. The RSUET model avoids the limitations of the well-known Stochastic User Equilibrium model (SUE) and the Deterministic User Equilibrium model (DUE), by combining the strengths of the Boundedly Rational User Equilibrium model and the Restricted Stochastic User Equilibrium model (RSUE). Thereby, the RSUET model reaches an equilibrated solution in which the flow is distributed according to Random Utility Theory among a consistently equilibrated set of paths which all are within a threshold relative to the cost on the cheapest path and which do not leave any attractive paths unused. Several variants of a generic RSUET solution algorithm are tested and calibrated on a large-scale case network with 18,708 arcs and about 20 million OD-pairs, and comparisons are performed with respect to a previously proposed RSUE model as well as an existing link-based mixed Multinomial Probit (MNP) SUE model. The results show that the RSUET has very attractive computation times for large-scale applications and demonstrate that the threshold addition to the RSUE model improves the behavioural realism, especially for high congestion cases. Also, fast and well-behaved convergence to equilibrated solutions among non-universal choice sets is observed across different congestion levels, choice model scale parameters, and algorithm step sizes. Clearly, the results highlight that the RSUET outperforms the MNP SUE in terms of convergence, calculation time and behavioural realism. The choice set composition is validated by using 16,618 observed route choices collected by GPS devices in the same network and observing their reproduction within the equilibrated choice sets generated by the RSUET model. Relevantly, the RSUET model is very successful in reproducing observed link

    Stochastic User Equilibrium with a Bounded Choice Model

    Get PDF
    Stochastic User Equilibrium (SUE) models allow the representation of the perceptual and preferential differences that exist when drivers compare alternative routes through a transportation network. However, as an effect of the used choice models, conventional applications of SUE are based on the assumption that all available routes have a positive probability of being chosen, however unattractive. In this paper, a novel choice model, the Bounded Choice Model (BCM), is presented along with network conditions for a corresponding Bounded SUE. The model integrates an exogenously-defined bound on the random utility of the set of paths that are used at equilibrium, within a Random Utility Theory (RUT) framework. The model predicts which routes are used and unused (the choice sets are equilibrated), while still ensuring that the distribution of flows on used routes accords to a Discrete Choice Model. Importantly, conditions to guarantee existence and uniqueness of the Bounded SUE are shown. Also, a corresponding solution algorithm is proposed and numerical results are reported by applying this to the Sioux Falls network

    Path Size Logit route choice models: Issues with current models, a new internally consistent approach, and parameter estimation on a large-scale network with GPS data

    Get PDF
    Path Size Logit route choice models attempt to capture the correlation between routes by including correction terms within the route utility functions. This provides a convenient closed-form solution for implementation in traffic network models. The path size terms measure distinctiveness of routes; a route is penalised based on the number of other routes sharing its links, and the costs of those shared links. Typically, real road networks have many very long routes that should be considered unrealistic. Such unrealistic routes are problematic for the Path Size Logit (PSL) model because they negatively impact the choice probabilities of realistic routes when links are shared. The Generalised Path Size Logit (GPSL) model attempts to address this problem by weighting the contributions of routes to path size terms according to the ratio of route travel costs. However, the GPSL model is not internally consistent in how it defines routes as being unrealistic: the path size terms consider only travel cost, whereas the route choice probability relation considers disutility including the correction term. To solve these challenges, this paper formulates a new internally consistent Adaptive Path Size Logit (APSL) model wherein routes contribute to path size terms according to the ratio of route choice probabilities, ensuring that routes defined as unrealistic by the path size terms, are exactly those with very low choice probabilities. The APSL route choice probability relation is an implicit function, naturally expressed as a fixed-point problem. A proof is provided for the guaranteed existence of solutions, as well as conditions for the uniqueness of solutions. A Maximum Likelihood Estimation procedure is given for estimating the APSL model with tracked route observation data, and this procedure is investigated in a simulation study where it is shown it is generally possible to reproduce assumed true parameters. APSL is then estimated using real tracked route GPS data on a large-scale network, and results are compared with other PSL models

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    From quantum fusiliers to high-performance networks

    Full text link
    Our objective was to design a quantum repeater capable of achieving one million entangled pairs per second over a distance of 1000km. We failed, but not by much. In this letter we will describe the series of developments that permitted us to approach our goal. We will describe a mechanism that permits the creation of entanglement between two qubits, connected by fibre, with probability arbitrarily close to one and in constant time. This mechanism may be extended to ensure that the entanglement has high fidelity without compromising these properties. Finally, we describe how this may be used to construct a quantum repeater that is capable of creating a linear quantum network connecting two distant qubits with high fidelity. The creation rate is shown to be a function of the maximum distance between two adjacent quantum repeaters.Comment: 2 figures, Comments welcom

    A disaggregate freight transport chain choice model for Europe

    Get PDF
    This paper presents the estimation of a discrete freight transport chain choice model for Europe, which was developed for the European Union as part of the Transtools 3 project. The model describes nine different multi- and single mode chain alternatives of which three can be either container or non-containerised, and it segments freight into dry bulk, liquid bulk, containers and general cargo. The model was estimated on the basis of disaggregate data at the shipment level (Swedish CFS and French ECHO data). Several transport costs specifications and nesting structures were tested and elasticities compared with reference literature. It was found that freight models are characterised by heterogeneity, non-linearity in transport costs and hence Value of Times and non-constant rates of substitution. Not taking these elements into account will have consequences for the evaluation of transport policies using the freight transport model

    Species-specific differences in the Pro-Ala rich region of cardiac myosin binding protein-C

    Get PDF
    Cardiac myosin binding protein-C (cMyBP-C) is an accessory protein found in the A-bands of vertebrate sarcomeres and mutations in the cMyBP-C gene are a leading cause of familial hypertrophic cardiomyopathy. The regulatory functions of cMyBP-C have been attributed to the N-terminus of the protein, which is composed of tandem immunoglobulin (Ig)-like domains (C0, C1, and C2), a region rich in proline and alanine residues (the Pro-Ala rich region) that links C0 and C1, and a unique sequence referred to as the MyBP-C motif, or M-domain, that links C1 and C2. Recombinant proteins that contain various combinations of the N-terminal domains of cMyBP-C can activate actomyosin interactions in the absence of Ca2+, but the specific sequences required for these effects differ between species; the Pro-Ala region has been implicated in human cMyBP-C whereas the C1 and M-domains appear important in mouse cMyBP-C. To investigate whether species-specific differences in sequence can account for the observed differences in function, we compared sequences of the Pro-Ala rich region in cMyBP-C isoforms from different species. Here we report that the number of proline and alanine residues in the Pro-Ala rich region varies significantly between different species and that the number correlates directly with mammalian body size and inversely with heart rate. Thus, systematic sequence differences in the Pro-Ala rich region of cMyBP-C may contribute to observed functional differences in human versus mouse cMyBP-C isoforms and suggest that the Pro-Ala region may be important in matching contractile speed to cardiac function across species
    corecore