44 research outputs found

    Heme Mediated STAT3 Activation in Severe Malaria

    Get PDF
    The mortality of severe malaria [cerebral malaria (CM), severe malaria anemia (SMA), acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)] remains high despite the availability associated with adequate treatments. Recent studies in our laboratory and others have revealed a hitherto unknown correlation between chemokine CXCL10/CXCR3, Heme/HO-1 and STAT3 and cerebral malaria severity and mortality. Although Heme/HO-1 and CXCL10/CXCR3 interactions are directly involved in the pathogenesis of CM and fatal disease, the mechanism dictating how Heme/HO-1 and CXCL10/CXCR3 are expressed and regulated under these conditions is still unknown. We therefore tested the hypothesis that these factors share common signaling pathways and may be mutually regulated.We first clarified the roles of Heme/HO-1, CXCL10/CXCR3 and STAT3 in CM pathogenesis utilizing a well established experimental cerebral malaria mouse (ECM, P. berghei ANKA) model. Then, we further determined the mechanisms how STAT3 regulates HO-1 and CXCL10 as well as mutual regulation among them in CRL-2581, a murine endothelial cell line.The results demonstrate that (1) STAT3 is activated by P. berghei ANKA (PBA) infection in vivo and Heme in vitro. (2) Heme up-regulates HO-1 and CXCL10 production through STAT3 pathway, and regulates CXCL10 at the transcriptional level in vitro. (3) HO-1 transcription is positively regulated by CXCL10. (4) HO-1 regulates STAT3 signaling.Our data indicate that Heme/HO-1, CXCL10/CXCR3 and STAT3 molecules as well as related signaling pathways play very important roles in the pathogenesis of severe malaria. We conclude that these factors are mutually regulated and provide new opportunities to develop potential novel therapeutic targets that could be used to supplement traditional prophylactics and treatments for malaria and improve clinical outcomes while reducing malaria mortality. Our ultimate goal is to develop novel therapies targeting Heme or CXCL10-related biological signaling molecules associated with development of fatal malaria

    SYSGENET: a meeting report from a new European network for systems genetics

    Get PDF
    The first scientific meeting of the newly established European SYSGENET network took place at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, April 7-9, 2010. About 50 researchers working in the field of systems genetics using mouse genetic reference populations (GRP) participated in the meeting and exchanged their results, phenotyping approaches, and data analysis tools for studying systems genetics. In addition, the future of GRP resources and phenotyping in Europe was discussed

    VEGF Promotes Malaria-Associated Acute Lung Injury in Mice

    Get PDF
    The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies

    Platelets Alter Gene Expression Profile in Human Brain Endothelial Cells in an In Vitro Model of Cerebral Malaria

    Get PDF
    Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM) in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC) and human brain microvascular endothelial cells (HBEC) and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF) and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM

    A Genetically Hard-Wired Metabolic Transcriptome in Plasmodium falciparum Fails to Mount Protective Responses to Lethal Antifolates

    Get PDF
    Genome sequences of Plasmodium falciparum allow for global analysis of drug responses to antimalarial agents. It was of interest to learn how DNA microarrays may be used to study drug action in malaria parasites. In one large, tightly controlled study involving 123 microarray hybridizations between cDNA from isogenic drug-sensitive and drug-resistant parasites, a lethal antifolate (WR99210) failed to over-produce RNA for the genetically proven principal target, dihydrofolate reductase-thymidylate synthase (DHFR-TS). This transcriptional rigidity carried over to metabolically related RNA encoding folate and pyrimidine biosynthesis, as well as to the rest of the parasite genome. No genes were reproducibly up-regulated by more than 2-fold until 24 h after initial drug exposure, even though clonal viability decreased by 50% within 6 h. We predicted and showed that while the parasites do not mount protective transcriptional responses to antifolates in real time, P. falciparum cells transfected with human DHFR gene, and adapted to long-term WR99210 exposure, adjusted the hard-wired transcriptome itself to thrive in the presence of the drug. A system-wide incapacity for changing RNA levels in response to specific metabolic perturbations may contribute to selective vulnerabilities of Plasmodium falciparum to lethal antimetabolites. In addition, such regulation affects how DNA microarrays are used to understand the mode of action of antimetabolites

    Linkage of mild malaria to the major histocompatibility complex in families living in Burkina Faso

    No full text
    International audienceno abstrac
    corecore