1,057 research outputs found
Cellulose acetate phthalate, a common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site on the virus envelope glycoprotein gp120
BACKGROUND: Cellulose acetate phthalate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was shown to inhibit infection by the human immunodeficiency virus type 1 (HIV-1) and several herpesviruses. CAP formulations inactivated HIV-1, herpesvirus types 1 (HSV-1) and 2 (HSV-2) and the major nonviral sexually transmitted disease (STD) pathogens and were effective in animal models for vaginal infection by HSV-2 and simian immunodeficiency virus. METHODS: Enzyme-linked immunoassays and flow cytometry were used to demonstrate CAP binding to HIV-1 and to define the binding site on the virus envelope. RESULTS: 1) CAP binds to HIV-1 virus particles and to the envelope glycoprotein gp120; 2) this leads to blockade of the gp120 V3 loop and other gp120 sites resulting in diminished reactivity with HIV-1 coreceptors CXCR4 and CCR5; 3) CAP binding to HIV-1 virions impairs their infectivity; 4) these findings apply to both HIV-1 IIIB, an X4 virus, and HIV-1 BaL, an R5 virus. CONCLUSIONS: These results provide support for consideration of CAP as a topical microbicide of choice for prevention of STDs, including HIV-1 infection
Caspase-8 controls the gut response to microbial challenges by Tnf-alpha-dependent and independent pathways
Objectives: Intestinal epithelial cells (IEC) express toll-like receptors (TLR) that facilitate microbial recognition. Stimulation of TLR ligands induces a transient increase in epithelial cell shedding, a mechanism that serves the antibacterial and antiviral host defence of the epithelium and promotes elimination of intracellular pathogens. Although activation of the extrinsic apoptosis pathway has been described during inflammatory shedding, its functional involvement is currently unclear. Design: We investigated the functional involvement of caspase-8 signalling in microbial-induced intestinal cell shedding by injecting Lipopolysaccharide (LPS) to mimic bacterial pathogens and poly(I:C) as a probe for RNA viruses in vivo. Results: TLR stimulation of IEC was associated with a rapid activation of caspase-8 and increased epithelial cell shedding. In mice with an epithelial cell-specific deletion of caspase-8 TLR stimulation caused Rip3-dependent epithelial necroptosis instead of apoptosis. Mortality and tissue damage were more severe in mice in which IECs died by necroptosis than apoptosis. Inhibition of receptor-interacting protein (Rip) kinases rescued the epithelium from TLR-induced gut damage. TLR3-induced necroptosis was directly mediated via TRIF-dependent pathways, independent of Tnf-α and type III interferons, whereas TLR4-induced tissue damage was critically dependent on Tnf-α. Conclusions: Together, our data demonstrate an essential role for caspase-8 in maintaining the gut barrier in response to mucosal pathogens by permitting inflammatory shedding and preventing necroptosis of infected cells. These data suggest that therapeutic strategies targeting the cell death machinery represent a promising new option for the treatment of inflammatory and infective enteropathies
Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease
Loss of intestinal barrier function plays an important role in the pathogenesis of inflammatory bowel disease (IBD). Shedding of intestinal epithelial cells is a potential cause of barrier loss during inflammation. The objectives of the study were (1) to determine whether cell shedding and barrier loss in humans can be detected by confocal endomicroscopy and (2) whether these parameters predict relapse of IBD
The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis
Although necrosis and necroinflammation are central features of many liver diseases, the role of programmed necrosis in the context of inflammation-dependent hepatocellular death remains to be fully determined. Here, we have demonstrated that the pseudokinase mixed lineage kinase domain-like protein (MLKL), which plays a key role in the execution of receptor interacting protein (RIP) lcinase-dependent necroptosis, is upregulated and activated in human autoimmune hepatitis and in a murine model of inflammation-dependent hepatitis. Using genetic and pharmacologic approaches, we determined that hepatocellular necrosis in experimental hepatitis is driven by an MLKL-dependent pathway that occurs independently of RIPK3. Moreover, we have provided evidence that the cytotoxic activity of the proinflammatory cytokine IFN-gamma in hepatic inflammation is strongly connected to induction of MLKL expression via activation of the transcription factor STAT1. In summary, our results reveal a pathway for MLKL-dependent programmed necrosis that is executed in the absence of RIPK3 and potentially drives the pathogenesis of severe liver diseases
Manual cell selection in single cell transcriptomics using scSELpy supports the analysis of immune cell subsets
Introduction
Single cell RNA sequencing plays an increasing and indispensable role in immunological research such as in the field of inflammatory bowel diseases (IBD). Professional pipelines are complex, but tools for the manual selection and further downstream analysis of single cell populations are missing so far.
Methods
We developed a tool called scSELpy, which can easily be integrated into Scanpy-based pipelines, allowing the manual selection of cells on single cell transcriptomic datasets by drawing polygons on various data representations. The tool further supports the downstream analysis of the selected cells and the plotting of results.
Results
Taking advantage of two previously published single cell RNA sequencing datasets we show that this tool is useful for the positive and negative selection of T cell subsets implicated in IBD beyond standard clustering. We further demonstrate the feasibility for subphenotyping T cell subsets and use scSELpy to corroborate earlier conclusions drawn from the dataset. Moreover, we also show its usefulness in the context of T cell receptor sequencing.
Discussion
Collectively, scSELpy is a promising additive tool fulfilling a so far unmet need in the field of single cell transcriptomic analysis that might support future immunological research
Of tennis courts and fireplaces: Neurath's internment on the Isle of Man and his politics of design
Otto Neurathâs version of functionalism is one that begins with people âas we find them,â a proposition first set out in his 1917 essay âThe Converse Taylor System.â Any attempt to redesign the existing furnishings of everyday life must take into account âfunctionsâ that go beyond the obvious purpose of objects: functions that are to do with sociability, happiness, familiarity, the love of âcoziness,â and that address the diversity and contradictoriness of people. This essay considers how Neurath applied and made use of these ideas about design in 1940s Britain, during and after his internment on the Isle of Man between 1940â1941 and in talks, papers and correspondence from this period. It does not focus on the Isotype Institute, which would usually be considered his principal intervention in design, but on his commentary on everyday objects and practices. In particular it centres on four items â tennis courts, fireplaces, chairs and shoes â and through these elaborates some of the connections between Neurathâs ideas about the design of everyday life, and the significance of everyday practices, and his logical empiricism
Mechanism-Based Treatment Strategies for IBD: Cytokines, Cell Adhesion Molecules, JAK Inhibitors, Gut Flora, and More
Background
Although TNF inhibitors revolutionized the therapy of inflammatory bowel disease (IBD), we have been reaching a point where other therapies with different mechanisms of action are necessary. A rising number of elderly IBD patients with contraindications to established therapies and a growing group of patients losing response to anti-TNF therapy compel us to find safer, better-tolerated, and, ideally, personalized treatment options. However, in order to choose the right drug to fit a patient, it is indispensable to understand the pathomechanism involved in IBD.
Summary
The aim of this review is to explain the inflammatory signaling pathways in IBD and how to inhibit them with current and future therapeutic approaches. Next to biologic agents targeting inflammatory cytokines (anti-TNF agents, anti-IL-12/-23 agents, and specific inhibitors of IL-23), biologics blocking leukocyte trafficking to the gut (anti-integrin antibodies) are available nowadays. More recently, small molecules inhibiting the JAK-STAT pathway (JAK inhibitors) or preventing lymphocyte trafficking (sphingosine-1-phosphate modulators) have been approved or are under investigation. Furthermore, modifying the microbiota has potential therapeutic effects on IBD, and autologous hematopoietic or mesenchymal stem cell transplantation may be considered for a highly selected group of IBD patients.
Key Message
Physicians should understand the different mechanisms of action of the potential therapies for IBD to select the right drug for the right patient
Nr4a1-dependent non-classical monocytes are important for macrophage-mediated wound healing in the large intestine
IntroductionMacrophages play an important role in intestinal wound healing. However, the trajectories from circulating monocytes to gut macrophages are incompletely understood.MethodsTaking advantage of mice depleted for non-classical monocytes due to deficiency for the transcription factor Nr4a1, we addressed the relevance of non-classical monocytes for large intestinal wound healing using flow cytometry, in vivo wound healing assays and immunofluorescence.ResultsWe show that wound healing in Nr4a1-deficient mice is substantially delayed and associated with reduced peri-lesional presence of macrophages with a wound healing phenotype.DiscussionOur data suggest that non-classical monocytes are biased towards wound healing macrophages. These insights might help to understand, how targeting monocyte recruitment to the intestine can be used to modulate intestinal macrophage functions
Total Recall: Intestinal TRM Cells in Health and Disease
Tissue-resident memory T cells (TRM cells) have crucial functions in host defense in mucosal tissues. They provide local adaptive immune surveillance and allow the fast initiation of targeted adaptive immune responses in case of antigen re-exposure. Recently, an aberrant activation in the case of immunologically mediated diseases has been increasingly acknowledged. As the organ with the largest interface to the environment, the gastrointestinal tract faces billions of antigens every day. Tightly balanced processes are necessary to ensure tolerance towards non-hazardous antigens, but to set up a powerful immune response against potentially dangerous ones. In this complex nexus of immune cells and their mediators, TRM cells play a central role and have been shown to promote both physiological and pathological events. In this review, we will summarize the current knowledge on the homeostatic functions of TRM cells and delineate their implication in infection control in the gut. Moreover, we will outline their commitment in immune dysregulation in gastrointestinal chronic inflammatory conditions and shed light on TRM cells as current and potential future therapeutic targets
Mongersen, an oral SMAD7 antisense oligonucleotide, and crohn's disease
Background Crohn's disease-related inflammation is characterized by reduced activity of the immunosuppressive cytokine transforming growth factor ÎČ1 (TGF-ÎČ1) due to high levels of SMAD7, an inhibitor of TGF-ÎČ1 signaling. Preclinical studies and a phase 1 study have shown that an oral SMAD7 antisense oligonucleotide, mongersen, targets ileal and colonic SMAD7. Methods In a double-blind, placebo-controlled, phase 2 trial, we evaluated the efficacy of mongersen for the treatment of persons with active Crohn's disease. Patients were randomly assigned to receive 10, 40, or 160 mg of mongersen or placebo per day for 2 weeks. The primary outcomes were clinical remission at day 15, defined as a Crohn's Disease Activity Index (CDAI) score of less than 150, with maintenance of remission for at least 2 weeks, and the safety of mongersen treatment. A secondary outcome was clinical response (defined as a reduction of 100 points or more in the CDAI score) at day 28. Results The proportions of patients who reached the primary end point were 55% and 65% for the 40-mg and 160-mg mongersen groups, respectively, as compared with 10% for the placebo group (P<0.001). There was no significant difference in the percentage of participants reaching clinical remission between the 10-mg group (12%) and the placebo group. The rate of clinical response was significantly greater among patients receiving 10 mg (37%), 40 mg (58%), or 160 mg (72%) of mongersen than among those receiving placebo (17%) (P = 0.04, P<0.001, and P<0.001, respectively). Most adverse events were related to complications and symptoms of Crohn's disease. Conclusions We found that study participants with Crohn's disease who received mongersen had significantly higher rates of remission and clinical response than those who received placebo
- âŠ