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Nr4a1-dependent non-classical
monocytes are important for
macrophage-mediated wound
healing in the large intestine

Karin Heidbreder1†, Katrin Sommer1†, Maximilian Wiendl1,
Tanja M. Müller1,2, Imke Atreya1,2, Kai Hildner1,2,
Markus F. Neurath1,2 and Sebastian Zundler1,2*

1Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, Germany, 2Deutsches Zentrum Immuntherapie (DZI), University
Hospital Erlangen, Erlangen, Germany
Introduction: Macrophages play an important role in intestinal wound healing.

However, the trajectories from circulating monocytes to gut macrophages are

incompletely understood.

Methods: Taking advantage of mice depleted for non-classical monocytes due

to deficiency for the transcription factor Nr4a1, we addressed the relevance of

non-classical monocytes for large intestinal wound healing using flow

cytometry, in vivo wound healing assays and immunofluorescence.

Results: We show that wound healing in Nr4a1-deficient mice is substantially

delayed and associated with reduced peri-lesional presence of macrophages

with a wound healing phenotype.

Discussion:Our data suggest that non-classical monocytes are biased towards

wound healing macrophages. These insights might help to understand, how

targeting monocyte recruitment to the intestine can be used to modulate

intestinal macrophage functions.

KEYWORDS

Nr4a1 (Nur77), monocytes, macrophages, intestinal wound healing, gut homing
Background

The large surface of the gastrointestinal tract is constantly exposed to a plethora of

exogenous substances and commensal as well as potentially pathogenic microbiota. Thus,

to preserve the integrity of the host, tightly regulated programs are established to upkeep

the mucosal barrier function (1, 2). This crucially involves sophisticated processes of
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intestinal wound healing, which are required to close defects in

the epithelial and potentially also deeper layers of the mucosa in

view of the constant challenges present in the lumen (3–5).

How important this is gets particularly evident in the context

of pathology such as inflammatory bowel disease (IBD). Here,

breaches in the mucosal barrier facilitate the translocation of

antigens from a dysbiotic luminal microenvironment to the

lamina propria, where inappropriate immune responses are

evoked in genetically predisposed hosts (6). However, barrier

defects are not only involved in these initial steps of the

pathogenesis, but also key to approaches to resolve

inflammation. Accordingly, numerous clinical trials have

shown that mucosal healing is an important endpoint of

therapeutic intervention (7–9) and predicts long-term

remission (10).

This highlights the necessity to understand the molecular

and cellular processes involved in intestinal wound healing (11,

12). Previous investigations have demonstrated an important

role of different immune cells including macrophage subsets in

promoting or counteracting mucosal repair (13, 14). In general,

wound healing can be explained by a model involving several

overlapping phases: Following initial hemostasis, there is an

inflammatory phase marked by the recruitment of neutrophils

and pro-inflammatory macrophages that fight bacteria

challenging the wound area. In the further course, there is a

transition into a proliferative phase, in which endothelial cells,

fibroblasts and macrophages with a wound healing phenotype

orchestrate neoangiogenesis and tissue restoration (15).

In this and other contexts, in addition to a subset of resident

self-maintaining macrophages (16), the intestinal macrophage

pool is constantly replenished by the recruitment of circulating

monocytes differentiating into macrophages with different

phenotypes (17). Classically, macrophages are categorized into

M1 and M2 macrophages. While M1 macrophages are

characterized by the production of pro-inflammatory cytokines

such as TNF-a, IL-6 or IL-1b, M2macrophages express molecules

such as IL-10 and VEGF and have also been denoted as “wound

healing macrophages” (18). Over the last decade, several reports

have demonstrated that the reality is much more complex than

this dichotomous view, since macrophage activation states are

heterogeneous and context-sensitive (19).

There are also different subsets of circulating monocytes, in

mice namely Ly6Chigh classical monocytes considered as the main

source of intestinal macrophages in homeostasis, and Ly6Clow

non-classical monocytes patrolling along the vasculature (20).

These non-classical monocytes are dependent on the

transcription factor Nr4a1, which controls their bone marrow

differentiation and survival (21). Of note, data from different

tissues hint at a bias of non-classical monocytes towards

differentiation into macrophages with a wound healing

phenotype (22–24). However, this has not fully been established

in the intestine and the impact of Nr4a1 for macrophage-

mediated intestinal wound healing has not been addressed so far.
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Here, we took advantage of Nr4a1-deficient mice and show

that circulating non-classical monocytes and intestinal

macrophages are disturbed in these mice, which is associated

with delayed wound healing. Thus, our data add to the

understanding of repair processes in the gut and might help to

tailor future efforts to promote mucosal regeneration in the

context of IBD.
Methods

Mice

Nr4a1−/− mice were obtained from The Jackson Laboratory

(B6;129S2-Nr4a1tm1Jmi/J). C57BL/6 (WT) mice were purchased

from Janvier Labs. All mice were housed in individually

ventilated cages with a regular 12-hour day-night cycle and

used for experiments according to approval by the Government

of Lower Franconia in compliance with all relevant

ethical regulations.
Isolation of mouse cells

Bone marrow cells were isolated as previously described

(24). Briefly, the femurs of age- and sex-matched Nr4a1-

deficient and -proficient mice were dissected and flushed with

a 27 3/4G needle through a 70 mm nylon strainer and washed

two times with PBS.

To obtain splenocytes, freshly isolated spleens were mashed

through a 40 µm cell strainer with the plunger of a 1 ml syringe.

Subsequently, the cell pellet was resuspended in 3 ml of

ammonium-chloride-potassium lysis buffer (155 mM

ammonium chloride; 19 mM potassium hydrogen carbonate

and 0.68 mM EDTA; pH 7.27) and gently shaken for 3 minutes

to lyse erythrocytes.

Lamina propria mononuclear cells (LPMCs) were isolated

from the colon using the Lamina Propria Dissociation Kit

(Miltenyi Biotec) according to the manufacturer’s instructions

followed by Percoll density gradient centrifugation

(GE Healthcare).

Peripheral blood was taken from the facial vein. In order to

remove erythrocytes, 2 ml of 1x BD Pharm Lyse™ lysing

solution (BD Bioscience) was added to 100 µl of whole blood

and incubated for 15 minutes at room temperature.
Flow cytometry

To investigate the quantity and phenotype of monocytes,

bone marrow cells, splenocytes, LPMCs and peripheral blood

cells were analyzed by flow cytometry after staining for viable

cells using the eBioscience Viability dye eFluor 780 (Invitrogen),
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blockade of unspecific binding with Fc Blocking Reagent

(Miltenyi) and cell surface staining with the antibodies listed

in Supplementary Table 1.

For the analysis of macrophages, splenocytes or LPMCs were

treated and stained with the antibodies listed in Supplementary

Table 2 and Supplementary Table 3, respectively.

All samples were fixed in 300 µl BD cell fix (BD Bioscience)

for 1 hour at 4°C or FluoroFix™ Buffer (Biolegend) for 1 hour at

room temperature and analyses were performed on an LSR

Fortessa (BD Bioscience) instrument. For data analysis we used

FlowJo software (v10.8.1).
In vivo wound healing model

In vivo wound healing was performed as previously

described (24). Nr4a1-/- and WT mice were anesthetized with

isoflurane for colonoscopy, which was performed with a rigid

mini-endoscopy system (Karl Storz, SCB Xenon 175). On day 0,

the intestinal mucosal wounds were inflicted with a biopsy

forceps (Karl Storz 61029D with biopsy forceps 61071ZJ) in

the descending colon. Afterwards, the wound diameters were

documented by colonoscopy on day 0-7. The wound diameters

were measured with Image J and related to the initial wound

diameter on day 0.
Immunofluorescence

Colon tissue from mice was obtained at day 5 after

wounding as described above. A biopsy punch was used to

retrieve wounds with peri-lesional tissue, which were

immediately frozen in liquid nitrogen and embedded in OCT

compound (Tissue Tek, Sakura). The embedded wounds were

cut with Leica CM3050 S (layer thickness 10 µm). Cryosections

were fixed with 4% PFA. Next, unspecific binding sites were

blocked with Avidin/Biotin-Blocking-Kit (Vector Laboratories)

and with protein blocking reagent (ROTI®ImmunoBlock, Roth)

supplemented with 5% BSA (PAN-Biotech) and 20% goat serum

(Vector Laboratories). Next, the slides were permeabilized with

0.1% triton X and were incubated with primary antibodies

against Cd68 (polyclonal, abcam; dilution 1:200), Cd163

(TNKUPJ, Thermofisher; dilution 1:100), F4/80 (BM8,

BioLegend; dilution 1:200), Cd206 (polyclonal, abcam; dilution

1:200), Arginase-1 (polyclonal, Novus Biologicals; dilution

1:300) or iNos (Polyclonal, abcam; dilution 1:50). Goat ant-

rabbit AF488 (Invitrogen; dilution 1:200), goat anti-rat biotin

followed by streptavidin-Cy3 (both BioLegend; dilution 1:200),

goat anti-rat AF488 (abcam; dilution 1:200) and goat anti-rabbit

Cy3 (Millipore; dilution 1:200) were used for detection. Nuclei

were stained with Hoechst (Life Technologies). Analyses were

performed with fluorescence microscopy (Leica DM6000B) and

with confocal microscopy (Leica SP8).
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To control for unspecific staining, a control panel was included

for each slide. This control panel was only stained with the

respective secondary antibodies but no primary antibody.
Statistics

All statistical analyses were performed using the GraphPad

Prism software (v9.0.2). All data sets were tested for normal

distribution with the Shapiro-Wilk test in order to choose the

appropriate parametric or non-parametric tests. When two

groups were analyzed, an unpaired t-test was used for normally

distributed data. For not normally distributed data, the Mann-

Whitney test was chosen. If more than two groups were analyzed,

a 2-way ANOVA was performed. Error bars in all graphs display

the standard error of the mean (SEM). P values are indicated as

follows: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
Results

Peripheral blood non-classical
monocytes and intestinal macrophages
are reduced in Nr4a1-deficient mice

In a first step, we aimed to confirm thatNr4a1-deficient mice

display reduced numbers of non-classical monocytes. Thus, we

isolated cells from the bone marrow, spleen and peripheral blood

of Nr4a1-/- and WT mice and analyzed them by flow cytometry.

Monocytes were defined as viable Cd45+Cd172a+Cd11b+Ly6G-

SiglecF- cells (25) (Figure 1A). While overall monocyte

abundance in the bone marrow did not differ between Nr4a1-/-

and WT mice, less monocytes were found in the spleens and the

peripheral blood of Nr4a1-/- mice (Figures 1B–D). Importantly,

the Cd45+Cd172a+Cd11b+ parent population remained stable,

indicating a genuine effect on monocytes (Supplementary

Figures 1A–F).

We further quantified monocyte subsets based on Ly6C

expression defining non-classical monocytes as Ly6Clow and

classical monocytes as Ly6Chi (Figure 1E). In the bone

marrow, classical monocytes were somewhat higher in

Nr4a1-/- compared to WT mice and, accordingly, non-classical

monocytes were slightly reduced (Figure 1F and Supplementary

Figure 1G). In consistence with previous literature, these

differences were substantially increased in the spleen and the

peripheral blood (Figures 1G, H), clearly indicating extensive

depletion of circulating non-classical monocytes in Nr4a1-

deficient mice. A similar trend was also observed in the colon

lamina propria (Supplementary Figure 1H).

Aiming to elucidate whether there are qualitative in addition

to quantitative alterations in Nr4a1-deficient non-classical

monocytes in the peripheral blood, we analyzed their

expression of chemokine receptors. Interestingly, while the
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FIGURE 1

Depletion of non-classical monocytes in Nr4a1-/- mice. (A) Representative gating strategy for the identification of monocytes. Cells were gated
based on forward and side scatter before selecting single cells and viable cells. Monocytes were defined as Cd45+Cd11b+Cd172a+Ly6G-SiglecF-.
(B–D) Abundance of monocytes in the bone marrow (B), spleen (C) and peripheral blood (D) gated as shown in (A). (E) Representative gating for
Ly6Chi and Ly6Clow monocyte subsets in the peripheral blood of Nr4a1-/- and WT mice as % of monocytes. (F–H) Quantitative analysis of the
different monocyte subsets in Nr4a1-/- and WT mice in the bone marrow (n=7) (F), the spleen (n=8-9) (G) and the peripheral blood (n=6-7) (H).
* p < 0.05, ** p < 0.01.
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expression of Ccr2 and Ccr4 did not differ between Nr4a1-

deficient and -proficient non-classical monocytes Cx3cr1

expression was clearly reduced (Figure 2A) suggesting that

function of Nr4a1-deficient non-classical monocytes is altered

in addition to abundance.

Since circulating monocytes are the pool for monocyte-

derived macrophages in tissues such as the gut, we further
Frontiers in Immunology 05
investigated the abundance of macrophages in peripheral

tissues. While we observed no reduction of Cd45+Lin-B220-F4/

80+Cd11b+ macrophages in the spleens (25) of Nr4a1-deficient

compared with Nr4a1-proficient mice (Supplementary

Figures 2A, Figure 2B), the abundance of CD45+Ly6G-SiglecF-

Cd11b+Cd64+Cd11cintMHCII+Ly6C- macrophages in the large

intestine (25) of Nr4a1-/- mice was significantly reduced, while
A

B

C

FIGURE 2

Alteration of Cx3cr1 expression on non-classical monocytes and reduction of intestinal macrophages in Nr4a1-deficient mice.
(A) Representative histograms of the expression of the chemokine receptors Cx3cr1, Ccr2 and Ccr4 on Ly6Clow peripheral blood monocytes
(left) and quantitative analysis (right) in Nr4a1-/- (n=6) and WT (n=8) mice from three independent experiments. (B) Representative (left) and
quantitative flow cytometry (right) of splenic macrophages gated as described in Supplementary Figure 2A in Nr4a1-/- (n=9) and WT (n=9) mice.
(C) Representative (left) and quantitative flow cytometry of viable Cd45+Ly6G-Cd11b+SiglecF-Cd64+Cd11cintMHCII+Ly6C- macrophages in the
colon lamina propria of Nr4a1-/- (n=9) and WT (n=9) mice. Three independent experiments, ** p < 0.01, **** p < 0.0001. FMO, Fluorescence
Minus One Control.
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the parent population remained stable (Supplementary Figures

2B, Figure 2C, Supplementary Figure 3A).

Collectively, these data showed that reduced circulating non-

classical monocyte abundance in Nr4a1-deficient mice is

associated with lower macrophage frequency in the gut.

Experimental intestinal wound healing is
delayed in Nr4a1-deficient mice

To address the functional relevance of these observations in

the context of intestinal wound healing, we took advantage of a
Frontiers in Immunology 06
well-established experimental model (24) using a biopsy forceps

to induce mucosal wounds in Nr4a1-/- and WT mice

(Figure 3A). The wounds of each animal were documented

daily by colonoscopy (representative pictures in Figure 3B)

and the wound diameters were measured and analyzed with

ImageJ. Measurements were normalized to the initial wound

diameter (day 0). These analyses demonstrated that wound

repair was substantially delayed in Nr4a1-/- mice (Figures 3B,

C). Interestingly, no differences were observed up to day 3 after

wounding indicating that the early phase of wound healing is not

affected by Nr4a1.
A

B

C

FIGURE 3

Delayed wound healing in the colon of Nr4a1-/- mice. (A) Schematic depiction of the in vivo wound healing model. The intestinal mucosal wounds
were inflicted with a biopsy forceps (day 0) and subsequently followed up by endoscopy (day 0-7). (B) Representative colonoscopy images of large
intestinal wounds in the descending colon at the indicated time points. (C) Quantitative analysis of relative wound diameters over time (n=8-9 per
group). The indicated wound diameters were related to the initial wound diameter on day 0. * p < 0.05, ** p < 0.01, **** p < 0.0001.
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Reduced peri-lesional presence of
wound healing macrophages in Nr4a1-
deficient mice

Earlier studies had suggested that delayed wound healing is

associated with disturbances in the balance of macrophage

subsets and in particular with a reduction of wound healing

macrophages in the late phase of wound healing (24).

Thus, we finally explored the presence of macrophage

subsets in the wound bed of intestinal wounds at day 5 after

wounding by immunofluorescence. We found significantly less

cells co-expressing the pan-macrophage marker Cd68 and

Cd163, a scavenger receptor preferentially expressed on

wound healing macrophages, in the wound area in Nr4a1-/-

mice compared with WT mice (Figure 4A). The same was the

case, when staining for the combination of the pan-macrophage

marker F4/80 and Cd206 (Figure 4B), a C-type lectin that is also

preferentially expressed on wound healing macrophages (26–

28). Moreover, a similar pattern was observed upon staining

with F4/80 in combination with Arginase-1 (Figure 4C),

another marker of wound healing macrophages (29, 30). To

the contrary, no differences were noted for F4/80+iNos+ cells

(Figure 4D) with an M1-like pro-inflammatory phenotype (31,

32). Interestingly, the analysis of the pan macrophage markers

Cd68 and F4/80 showed no significant difference in the wound

area in Nr4a1-/- mice compared to WT mice (Supplementary

Figure 3B) indicating that the effects observed are

subset-specific.

Taken together, these data demonstrated that wound healing

macrophages, but not pro-inflammatory macrophages are

reduced during intestinal wound repair in Nr4a1-deficient mice.
Discussion

Monocyte-derived macrophages are centrally involved in

processes of tissue regeneration (33). They appear in

heterogeneous activation states, which serve different functions

during wound healing: While the early phase is marked by the

presence of macrophages with pro-inflammatory phenotypes,

tissue repair and resolving macrophages are observed later on

(34–36).

Although self-renewing local macrophages have been

described in the gut (16), a relevant part of the intestinal

macrophages is constantly replenished by monocytes homing

to the gut from the circulation (17). In analogy to the

predominantly T cell-focused therapeutic approaches aiming

at reducing inflammation in IBD by preventing gut homing via

the integrin a4b7 (37, 38), this fact might provide opportunities

to modulate macrophage-dependent processes such as mucosal
Frontiers in Immunology 07
healing in the intestine. However, circulating monocytes are also

heterogeneous and targeted strategies therefore require to

understand the developmental trajectories from specific

monocyte subsets to tissue macrophages.

Thus, we aimed to determine the function and presence of

macrophage subsets in mice deficient for the transcription factor

Nr4a1 leading to specific depletion of non-classical monocytes

(21). We show that this depletion is associated with delayed

wound healing and reduced peri-lesional wound healing

macrophage abundance. Thus, although it has to be

underscored that this must not be understood as a causal

proof of such trajectories, our data suggest that non-classical

monocytes are important precursors of wound healing

macrophages in the intestine.

This is well in line with previous literature. Auffray et al. had

shown that a transcriptional signature resembling M2

macrophages is initiated in non-classical “patrolling”

monocytes after recruitment to wound areas (22).

Consistently, Olingy and colleagues demonstrated in a soft

tissue injury model that non-classical monocytes are skewed

towards wound healing macrophages (23) and, similarly, we had

earlier suggested this for the gut based on latex bead uptake

studies (24).

Thus, collectively, these data indicate that specifically

targeting the gut homing of distinct monocyte subsets might

be useful to modulate specific intestinal macrophage functions.

This might indeed be feasible, since several lines of evidence

point towards differential tissue homing pathways employed by

classical and non-classical monocytes. E.g., it has been shown in

atherosclerosis that the expression and function of chemokine

receptors such as Ccr2, Ccr5 and Cx3cr1 differs between classical

and non-classical monocytes (39). Similarly, P-selectin

glycoprotein ligand 1 was specifically expressed on classical

monocytes and determined their homing to atherosclerotic

plaques in mice (40).

Our data are also in line with previously reported findings on

the role of Nr4a1 for monocytes and macrophage differentiation.

While non-classical monocytes seem to differentiate from

classical monocytes (41), Nr4a1 has been demonstrated to be

essential for this conversion (21, 42). Thus, our finding of

reduced non-classical and increased classical monocytes in

Nr4a1-deficient mice is probably reflecting differentiation

block. On a functional level and consistent with our data,

Honda et al. showed in a thermal injury model in the gut that

Nr4a1-dependent Cx3cr1+Ccr2low monocytes/macrophages

were essential for tissue repair in the intestine (43).

Conversely, Menezes and colleagues demonstrated that Ly6C+

monocytes that are different from Nr4a1-dependent non-

classical Ly6Clow monocytes preferentially differentiate into

iNos+ pro-inflammatory macrophages or monocyte-derived
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1040775
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Heidbreder et al. 10.3389/fimmu.2022.1040775
A

B

D

C

FIGURE 4

Reduced perilesional presence of wound healing macrophages in the colonic mucosa of Nr4a1-/- mice compared to WT mice. Representative
(left) and quantitative immunofluorescence (right) for the perilesional co-expression of Cd68 and Cd163 (A), F4/80 and Cd206 (B), F4/80 and
Arg1 (C) and F4/80 and inducible nitric oxide synthase (iNos) (D) in intestinal wound areas of Nr4a1-/- mice (n=8) and WT mice (n=9) on day 5
after injury. Scale bars 50 µm (upper panels), 25 µm (lower panels); HPF, high-power field. * p<0.05, ** p<0.01, *** p<0.001.
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dendritic cells (44). However, other data also underscore that

tissue-specific mechanisms seem to exist, since in the

myocardium, Ly6Clow monocytes did not differentiate into

macrophages, whereas Ly6Chi monocytes gave rise both to

pro-inflammatory and, in an Nr4a1-dependent mechanism, to

reparative macrophages (45).

A limitation that needs to be mentioned is that, although we

defined non-classical and classical monocytes according to well

established protocols available in the literature (25), which

comprise the exclusion of other myeloid cell subset such as

neutrophils (based on Ly6G expression), eosinophils (based on

Siglec F expression), NK cells (based on Cd172a and Cd11b

expression) and cDC1 cells (based on Cd172a expression), we

cannot formally exclude a contamination of our population by

Cd172+ cDC2 cells. It will be important to further address this

possibility in future studies.

In conclusion, our data further substantiate the concept of

preferential developmental pathways between circulating

monocyte and intestinal macrophage subsets and suggest that

these are of functional relevance in intestinal wound healing.

These insights might help to design future therapeutic

approaches interfering with intestinal macrophage-dependent

processes based on modulating the recruitment of monocytes to

the gut.
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SUPPLEMENTARY FIGURE 1

(A–C) Quantitative analyses of the Cd45+Cd172a+Cd11b+ parent
population of the bone marrow (A), spleen (B) and peripheral blood

(C) in Nr4a1-/- (n=7-8) and WT (n=7-9) mice underlying Figure 1. (D–F)
Quantitative flow cytometry analyses of SiglecF+Ly6G- (left) and

SiglecF-Ly6G+ cells (right) in the bone marrow (D), spleen (E) and
peripheral blood (F) (n=6-9). (G) Representative gating for the

identification of Ly6Chi and Ly6Clow monocyte subsets in the bone
marrow of Nr4a1-/- and WT mice (H)Quantitative analysis of Ly6Chi and

Ly6Clow monocytes in the lamina propria of Nr4a1-/- (n=7) and WT mice

(n=6). * p < 0.05.
Frontiers in Immunology 10
SUPPLEMENTARY FIGURE 2

(A) Representative gating strategy for the identification of splenic
macrophages. Linage markers included Cd49b, Cd3, Cd19 and Ly6G. (B)
Representative gating strategy for the identification of gut macrophages.

SUPPLEMENTARY FIGURE 3

(A) Representative (left) and quantitative flow cytometry (right) of the

expression of Cd64+Cd11cint cells in LPMCs of Nr4a1-/- (n=9) and WT
(n=9) mice. (B) Quantitative immunofluorescence for the perilesional

expression of Cd68 and F4/80 for the Arg1 staining in intestinal wound

areas of Nr4a1-/- mice (n=9) and WT mice (n=9) on day 5 after injury.
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