304 research outputs found
Integration of Multi-Stage Membrane Carbon Capture Processes to Coal-Fired Power Plants using highly permeable polymers
Membrane separation systems could be a feasible option as post combustion carbon capture technologies in coal-fired power plants. Recent advancement on membrane materials based on microporous super glassy polymers could improve significantly the capture process but the properties of the materials have to guide the design of the separation stage. In this study an advanced hybrid two-stage membrane process employing one of the most permeable polymer known (PIM-1) is retrofitted to a coal fired power plant and the process is analysed in terms of energy requirement and cost performance. The results are based on the use of an in-house detailed membrane module model implemented in UniSim Design®, the Honeywell process flowsheet simulator. The study indicates the need for advanced configuration in order for highly permeable membranes to be competitive with more mature technologies in terms of capture cost. The effect of ageing and impurities on the material is also investigated in order to predict the decline in process performance over time and suggest a timeproof design. Keywords: Membranes, PIMs, Post-combustion, LCO
Great SCO2T! Rapid tool for carbon sequestration science, engineering, and economics
CO2 capture and storage (CCS) technology is likely to be widely deployed in
coming decades in response to major climate and economics drivers: CCS is part
of every clean energy pathway that limits global warming to 2C or less and
receives significant CO2 tax credits in the United States. These drivers are
likely to stimulate capture, transport, and storage of hundreds of millions or
billions of tonnes of CO2 annually. A key part of the CCS puzzle will be
identifying and characterizing suitable storage sites for vast amounts of CO2.
We introduce a new software tool called SCO2T (Sequestration of CO2 Tool,
pronounced "Scott") to rapidly characterizing saline storage reservoirs. The
tool is designed to rapidly screen hundreds of thousands of reservoirs, perform
sensitivity and uncertainty analyses, and link sequestration engineering
(injection rates, reservoir capacities, plume dimensions) to sequestration
economics (costs constructed from around 70 separate economic inputs). We
describe the novel science developments supporting SCO2T including a new
approach to estimating CO2 injection rates and CO2 plume dimensions as well as
key advances linking sequestration engineering with economics. Next, we perform
a sensitivity and uncertainty analysis of geology combinations (including
formation depth, thickness, permeability, porosity, and temperature) to
understand the impact on carbon sequestration. Through the sensitivity analysis
we show that increasing depth and permeability both can lead to increased CO2
injection rates, increased storage potential, and reduced costs, while
increasing porosity reduces costs without impacting the injection rate (CO2 is
injected at a constant pressure in all cases) by increasing the reservoir
capacity.Comment: CO2 capture and storage; carbon sequestration; reduced-order
modeling; climate change; economic
CO2 soil flux baseline at the technological development plant for CO2 injection at Hontomin (Burgos, Spain)
From the end of 2013 and during the following two years, 20 kt of CO2sc are planned to be injected in a saline reservoir (1500 m depth) at the Hontomín site (NE Spain). The target aquifers are Lower Jurassic limestone formations which are sealed by Lower Cretaceous clay units at the Hontomín site (NE Spain). The injection of CO2 is part of the activities committed in the Technology Development phase of the EC-funded OXYCFB300 project (European Energy Program for Recovery – EEPR, http://www.compostillaproject.eu), which include CO2 injection strategies, risk assessment, and testing and validating monitoring methodologies and techniques.
Among the monitoring works, the project is intended to prove that present-day technology is able to monitor the evolution of injected CO2 in the reservoir and to detect potential leakage. One of the techniques is the measurement of CO2 flux at the soil–atmosphere interface, which includes campaigns before, during and after the injection operations.
In this work soil CO2 flux measurements in the vicinity of oil borehole, drilled in the eighties and named H-1 to H-4, and injection and monitoring wells were performed using an accumulation chamber equipped with an IR sensor. Seven surveys were carried out from November 2009 to summer 2011. More than 4000 measurements were used to determine the baseline flux of CO2 and its seasonal variations.
The measured values were low (from 5 to 13 g m−2 day−1) and few outliers were identified, mainly located close to the H-2 oil well. Nevertheless, these values cannot be associated to a deep source of CO2, being more likely related to biological processes, i.e. soil respiration. No anomalies were recognized close to the deep fault system (Ubierna Fault) detected by geophysical investigations. There, the CO2 flux is indeed as low as other measurement stations. CO2 fluxes appear to be controlled by the biological activity since the lowest values were recorded during autumn-winter seasons and they tend to increase in warm periods. Two reference CO2 flux values (UCL50 of 5 g m−2 d−1 for non-ploughed areas in autumn–winter seasons and 3.5 and 12 g m−2 d−1 for in ploughed and non-ploughed areas, respectively, in spring–summer time, and UCL99 of 26 g m−2 d−1 for autumn–winter in not-ploughed areas and 34 and 42 g m−2 d−1 for spring–summer in ploughed and not-ploughed areas, respectively) were calculated. Fluxes higher than these reference values could be indicative of possible leakage during the operational and post-closure stages of the storage project
Techno-economic assessment of two novel feeding systems for a dry-feed gasifier in an IGCC plant with Pd-membranes for CO2 capture
This study focuses on the application of Pd-based membranes for CO[subscript 2] capture in coal fueled power plants. In particular, membranes are applied to Integrated Gasification Combined Cycle with two innovative feeding systems. In the first feeding system investigated, CO[subscript 2] is used both as fuel carrier and back-flushing gas for the candle filters, while in the second case N[subscript 2] is the fuel carrier, and CO[subscript 2] the back-flushing gas. The latter is investigated because current dry feed technology vents about half of the fuel carrier, which is detrimental for the CO[subscript 2] avoidance in the CO[subscript 2] case. The hydrogen separation is performed in membrane modules arranged in series; consistently with the IGCC plant layout, most of the hydrogen is separated at the pressure required to fuel the gas turbine. Furthermore, about 10% of the overall hydrogen permeated is separated at ambient pressure and used to post-fire the heat recovery steam generator. This layout significantly reduces membrane surface area while keeping low efficiency penalties.
The resulting net electric efficiency is higher for both feeding systems, about 39%, compared to 36% of the reference Selexol-based capture plant. The CO[subscript 2] avoidance depends on the type of feeding system adopted, and its amount of vented gas; it ranges from 60% to 98%. From the economic point of view, membrane costs are significant and shares about 20% of the overall plant cost. This leads in the more optimistic case to a CO[subscript 2] avoidance cost of 35 €/t[subscript CO2], which is slightly lower than the reference case.Seventh Framework Programme (European Commission) (Grant agreement no. 241342
Recommended from our members
Oxidation and sulfidation resistant alloys with silicon additions
The Albany Research Center (ARC) has considerable experience in developing lean chromium, austenitic stainless steels with improved high temperature oxidation resistance. Using basic alloy design principles, a baseline composition of Fe-16Cr-16Ni-2Mn-1Mo alloys with Si and Al addition at a maximum of 5 weight percent was selected for potential application at temperatures above 700ºC for supercritical and ultra-supercritical power plant application. The alloys were fully austenitic. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700ºC to 800ºC. Oxidation resistances of alloys with Si only additions were outstanding, particularly at 800ºC (i.e., these alloys possessed weight gains 4 times less than a standard type-304 alloy). In addition, Si alloys pre-oxidized at 800ºC, showed a zero weight gain in subsequent testing for 1000 hours at 700ºC. Similar improvements were observed for Si only alloy after H2S exposure at 700ºC compared with type 304 stainless steel. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms at ARC. Depth profile analysis and element concentration profiles (argon ion etching/x-ray photoelectron spectroscopy) were conducted on oxidized specimens and base material at the National Energy Technology Laboratory
Carbon capture and storage: The ten year challenge
Carbon capture and storage (CCS) could play a significant role in reducing global CO2 emissions. It has the unique characteristic of keeping fossil carbon in the ground by allowing fossil fuels to be used, but with the CO2 produced being safely stored in a geological formation. Initial versions of the key component technologies are at a sufficient level of maturity to build integrated commercial-scale demonstration plants. If CCS is to reach its full potential to contribute to global efforts to mitigate the risk of dangerous climate change, it is urgent that a number of actions begin now in order to be ready for CCS deployment from around 2020 using proven designs that can be built in large numbers. This article discusses some key challenges for CCS, with a focus on development in the next decade, highlighting the potential benefits of a two tranche programme for integrated commercial-scale demonstration to develop proven reference plant designs and reviewing the importance of distinguishing between different classes of CCS according to their ability to significantly reduce CO2 emissions associated with fossil fuel use. It also identifies some ongoing CCS projects and initiatives and examines some possible implications of current policy discussions for technology development
Recommended from our members
Scale formation on Ni-based alloys in simulated solid oxide fuel cell interconnect environments
Recent publications suggest that the environment on the fuel side of the bi-polar stainless steel SOFC interconnects changes the oxidation behavior and morphology of the scale formed on the air side. The U.S. Department of Energy Albany Research Center (ARC), has examined the role of such exposure conditions on advanced nickel base alloys. Alloy formulations developed at ARC and commercial alloys were studied using X-ray diffraction (XRD) and Raman spectroscopy. The electrical property of oxide scales formed on selected alloys was determined in terms of areaspecific resistance (ASR). The corrosion behavior of ARC nickel-based alloys exposed to a dual environment of air/ H2 were compared to those of Crofer 22APU and Haynes 230
A parametric study of CO2 capture from gas-fired power plants using monoethanolamine (MEA)
Gas-FACTS EPSRC; CO2QUEST EU FP7 Grant; MESMERISE-CCS EPSR
Using noble gas fingerprints at the Kerr Farm to assess CO2 leakage allegations linked to the Weyburn-Midale CO2 Monitoring and Storage Project
- …
