39 research outputs found
Immunization with one Theileria parva strain results in similar level of CTL strain-specificity and protection compared to immunization with the three-component Muguga cocktail in MHC-matched animals
Abstract Background The tick-borne protozoan parasite Theileria parva causes a usually fatal cattle disease known as East Coast fever in sub-Saharan Africa, with devastating consequences for poor small-holder farmers. Immunity to T. parva, believed to be mediated by a cytotoxic T lymphocyte (CTL) response, is induced following natural infection and after vaccination with a live vaccine, known as the Infection and Treatment Method (ITM). The most commonly used version of ITM is a combination of parasites derived from three isolates (Muguga, Kiambu 5 and Serengeti-transformed), known as the “Muguga cocktail”. The use of a vaccine comprising several strains is believed to be required to induce a broad immune response effective against field challenge. In this study we investigated whether immunization with the Muguga cocktail induces a broader CTL response than immunization with a single strain (Muguga). Results Four MHC haplotype-matched pairs of cattle were immunized with either the trivalent Muguga cocktail or the single Muguga strain. CTL specificity was assessed on a panel of five different strains, and clonal responses to these strains were also assessed in one of the MHC-matched pairs. We did not find evidence for a broader CTL response in animals immunized with the Muguga cocktail compared to those immunized with the Muguga strain alone, in either the bulk or clonal CTL analyses. This was supported by an in vivo trial in which all vaccinated animals survived challenge with a lethal dose of the Muguga cocktail vaccine stabilate. Conclusion We did not observe any substantial differences in the immunity generated from animals immunized with either Muguga alone or the Muguga cocktail in the animals tested here, corroborating earlier results showing limited antigenic diversity in the Muguga cocktail. These results may warrant further field studies using single T. parva strains as future vaccine candidates
MHC Class I Bound to an Immunodominant Theileria parva Epitope Demonstrates Unconventional Presentation to T Cell Receptors
T cell receptor (TCR) recognition of peptide-MHC class I (pMHC) complexes is a crucial event in the adaptive immune response to pathogens. Peptide epitopes often display a strong dominance hierarchy, resulting in focusing of the response on a limited number of the most dominant epitopes. Such T cell responses may be additionally restricted by particular MHC alleles in preference to others. We have studied this poorly understood phenomenon using Theileria parva, a protozoan parasite that causes an often fatal lymphoproliferative disease in cattle. Despite its antigenic complexity, CD8+ T cell responses induced by infection with the parasite show profound immunodominance, as exemplified by the Tp1214–224 epitope presented by the common and functionally important MHC class I allele N*01301. We present a high-resolution crystal structure of this pMHC complex, demonstrating that the peptide is presented in a distinctive raised conformation. Functional studies using CD8+ T cell clones show that this impacts significantly on TCR recognition. The unconventional structure is generated by a hydrophobic ridge within the MHC peptide binding groove, found in a set of cattle MHC alleles. Extremely rare in all other species, this feature is seen in a small group of mouse MHC class I molecules. The data generated in this analysis contribute to our understanding of the structural basis for T cell-dependent immune responses, providing insight into what determines a highly immunogenic p-MHC complex, and hence can be of value in prediction of antigenic epitopes and vaccine design
Location of the CD8 T Cell Epitope within the Antigenic Precursor Determines Immunogenicity and Protection against the Toxoplasma gondii Parasite
CD8 T cells protect the host from disease caused by intracellular pathogens, such as the Toxoplasma gondii (T. gondii) protozoan parasite. Despite the complexity of the T. gondii proteome, CD8 T cell responses are restricted to only a small number of peptide epitopes derived from a limited set of antigenic precursors. This phenomenon is known as immunodominance and is key to effective vaccine design. However, the mechanisms that determine the immunogenicity and immunodominance hierarchy of parasite antigens are not well understood.Here, using genetically modified parasites, we show that parasite burden is controlled by the immunodominant GRA6-specific CD8 T cell response but not by responses to the subdominant GRA4- and ROP7-derived epitopes. Remarkably, optimal processing and immunodominance were determined by the location of the peptide epitope at the C-terminus of the GRA6 antigenic precursor. In contrast, immunodominance could not be explained by the peptide affinity for the MHC I molecule or the frequency of T cell precursors in the naive animals. Our results reveal the molecular requirements for optimal presentation of an intracellular parasite antigen and for eliciting protective CD8 T cells. © 2013 Feliu et al
Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity
<p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p>
<p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p>
<p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p>
Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity
<p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p>
<p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p>
<p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p>
Genetic and antigenic variation of the bovine tick-borne pathogen Theileria parva in the Great Lakes region of Central Africa
BACKGROUND : Theileria parva causes East Coast fever (ECF), one of the most economically important tick-borne diseases
of cattle in sub-Saharan Africa. A live immunisation approach using the infection and treatment method (ITM)
provides a strong long-term strain-restricted immunity. However, it typically induces a tick-transmissible carrier state
in cattle and may lead to spread of antigenically distinct parasites. Thus, understanding the genetic composition of T.
parva is needed prior to the use of the ITM vaccine in new areas. This study examined the sequence diversity and the
evolutionary and biogeographical dynamics of T. parva within the African Great Lakes region to better understand the
epidemiology of ECF and to assure vaccine safety. Genetic analyses were performed using sequences of two antigencoding
genes, Tp1 and Tp2, generated among 119 T. parva samples collected from cattle in four agro-ecological zones
of DRC and Burundi.
RESULTS : The results provided evidence of nucleotide and amino acid polymorphisms in both antigens, resulting
in 11 and 10 distinct nucleotide alleles, that predicted 6 and 9 protein variants in Tp1 and Tp2, respectively. Theileria
parva samples showed high variation within populations and a moderate biogeographical sub-structuring due to the
widespread major genotypes. The diversity was greater in samples from lowlands and midlands areas compared to
those from highlands and other African countries. The evolutionary dynamics modelling revealed a signal of selective
evolution which was not preferentially detected within the epitope-coding regions, suggesting that the observed
polymorphism could be more related to gene flow rather than recent host immune-based selection. Most alleles
isolated in the Great Lakes region were closely related to the components of the trivalent Muguga vaccine.
CONCLUSIONS : Our findings suggest that the extensive sequence diversity of T. parva and its biogeographical distribution
mainly depend on host migration and agro-ecological conditions driving tick population dynamics. Such
patterns are likely to contribute to the epidemic and unstable endemic situations of ECF in the region. However, the fact that ubiquitous alleles are genetically similar to the components of the Muguga vaccine together with the limited
geographical clustering may justify testing the existing trivalent vaccine for cross-immunity in the region.Additional file 1: Table S1. Cattle blood sample distribution across agroecological
zones.Additional file 2: Table S2. Nucleotide and amino acid sequences of Tp1
and Tp2 antigen epitopes from T. parva Muguga reference sequence.Additional file 3: Table S3. Characteristics of 119 T. parva samples
obtained from cattle in different agro-ecological zones (AEZs) of The
Democratic Republic of Congo and Burundi.Additional file 4: Figure S1. Multiple sequence alignment of the 11 Tp1
gene alleles obtained in this study.Additional file 5: Table S4. Estimates of evolutionary divergence
between gene alleles for Tp1 and Tp2, using proportion nucleotide
distance.Additional file 6: Table S5. Tp1 and Tp2 genes alleles with their corresponding
antigen variants.Additional file 7: Table S6. Amino acid variants of Tp1 and Tp2 CD8+
T
cell target epitopes of T. parva from DRC and Burundi.Additional file 8: Figure S2. Multiple sequence alignment of the 10 Tp2
gene alleles obtained in this study.Additional file 9: Table S7. Distribution of Tp1 gene alleles of T. parva
from cattle and buffalo in the sub-Saharan region of Africa.Additional file 10: Table S8. Distribution of Tp2 gene alleles of T. parva
from cattle and buffalo in the sub-Saharan region of Africa.Additional file 11: Figure S3. Neighbor-joining tree showing phylogenetic
relationships among 48 Tp1 gene alleles described in Africa.Additional file 12: Figure S4. Phylogenetic tree showing the relationships
among concatenated Tp1 and Tp2 nucleotide sequences of 93 T.
parva samples from cattle in DRC and Burundi.This study is part of the PhD work supported by the University of Namur (UNamur,
Belgium) through the UNamur-CERUNA institutional PhD grant awarded
to GSA for bioinformatic analyses, interpretation of data and manuscript write
up in Belgium. The laboratory aspects (molecular biology analysis) of the
project were supported by the BecA-ILRI Hub through the Africa Biosciences
Challenge Fund (ABCF) programme. The ABCF Programme is funded by
the Australian Department for Foreign Affairs and Trade (DFAT) through the
BecA-CSIRO partnership; the Syngenta Foundation for Sustainable Agriculture
(SFSA); the Bill & Melinda Gates Foundation (BMGF); the UK Department for International Development (DFID); and the Swedish International Development
Cooperation Agency (Sida). The ABCF Fellowship awarded to GAS was
funded by BMGF grant (OPP1075938). Sample collection, field equipment and
preliminary sample processing were supported through the “Theileria” project
co-funded to the Université Evangélique en Afrique (UEA) by the Agence
Universitaire de la Francophonie (AUF) and the Communauté Economique
des Pays des Grands Lacs (CEPGL). The International Foundation for Science
(IFS, Stockholm, Sweden) supported the individual scholarship awarded to
GSA (grant no. IFS-92890CA3) for field work and part of field equipment to the
“Theileria” project.http://www.parasitesandvectors.comam2020Veterinary Tropical Disease
Subdominant/Cryptic CD8 T Cell Epitopes Contribute to Resistance against Experimental Infection with a Human Protozoan Parasite
During adaptive immune response, pathogen-specific CD8+ T cells recognize preferentially a small number of epitopes, a phenomenon known as immunodominance. Its biological implications during natural or vaccine-induced immune responses are still unclear. Earlier, we have shown that during experimental infection, the human intracellular pathogen Trypanosoma cruzi restricts the repertoire of CD8+ T cells generating strong immunodominance. We hypothesized that this phenomenon could be a mechanism used by the parasite to reduce the breath and magnitude of the immune response, favoring parasitism, and thus that artificially broadening the T cell repertoire could favor the host. Here, we confirmed our previous observation by showing that CD8+ T cells of H-2a infected mice recognized a single epitope of an immunodominant antigen of the trans-sialidase super-family. In sharp contrast, CD8+ T cells from mice immunized with recombinant genetic vaccines (plasmid DNA and adenovirus) expressing this same T. cruzi antigen recognized, in addition to the immunodominant epitope, two other subdominant epitopes. This unexpected observation allowed us to test the protective role of the immune response to subdominant epitopes. This was accomplished by genetic vaccination of mice with mutated genes that did not express a functional immunodominant epitope. We found that these mice developed immune responses directed solely to the subdominant/cryptic CD8 T cell epitopes and a significant degree of protective immunity against infection mediated by CD8+ T cells. We concluded that artificially broadening the T cell repertoire contributes to host resistance against infection, a finding that has implications for the host-parasite relationship and vaccine development
Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites
Background:
Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata.
Results:
A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1.
Conclusions:
Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a ‘One Health’ approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans
CELL-SURFACE PHENOTYPE OF 2 CLONED POPULATIONS OF BOVINE LYMPHOCYTES DISPLAYING NONSPECIFIC CYTOTOXIC ACTIVITY
Monoclonal antibodies specific for T cell differentiation antigens were tested on four cloned populations of lymphocytes derived from the peripheral blood mononuclear cells of an animal immunised with Theileria parva. The clones were defined functionally in terms of cytotoxic activity, MHC restriction and expression of messenger RNA for CD3 and T cell receptor (TCR). Two clones contained RNA transcripts for CD3, TCR-alpha and beta and were positive for CD2, CD5 and CD6; one of these was a typical CD4+ class II MHC-restricted non-cytotoxic clone while the other was a CD8+ class I MHC-restricted cytotoxic clone. By contrast, the remaining two clones had the characteristics of non-specific killer cells in that they exhibited moderate levels of non-MHC-restricted killing; they contained TCR-delta mRNA and a 1.2 kb truncated form of TCR-beta message, but they did not contain CD3 or TCR-alpha mRNA. One of these non-specific killer clones only expressed CD2 whereas the other clone only expressed CD8, but without the CD8 determinant recognised by monoclonal antibodies CC58 and BAT52. All four clones were negative for the WC1 antigen which is expressed on gamma/delta T lymphocytes.status: publishe