499 research outputs found

    Performance Comparison Of Self-Consumption For A Photovoltaic System With Battery Storage And Load Management

    Get PDF
    As the energy consumption in the U.S. continuous to rise, there is a need to install more power plants to supply the energy demand. However, installing more fossil fuel power plants is very harmful to the environment. The rapid growth in photovoltaic (PV) system does contribute in reducing the amount of new power plants, but since its performance relies on weather conditions, this system may not be very reliable on its own. The non-dispatchable nature of PV limits the amount of PV on the current grid. In order to improve this system’s reliability, it is possible to add energy storage and charge it during off peak demand or when there is excess in energy PV generation. Therefore, whenever there is a peak demand, PV power can be combined with battery power to supply the demand. In addition, load management is another technique that can potentially allow PV to satisfy more loads. In this study, performance of a residential PV system with and without storage was studied in order to compare the improvements in self-consumption, meaning a decrease in grid imports/exports. Two different load management schemes were compared

    Cholesteryl hemiazelate causes lysosome dysfunction impacting vascular smooth muscle cell homeostasis

    Get PDF
    In atherosclerotic lesions, vascular smooth muscle cells (VSMCs) represent half of the foam cell population, which is characterized by an aberrant accumulation of undigested lipids within lysosomes. Loss of lysosome function impacts VSMC homeostasis and disease progression. Understanding the molecular mechanisms underlying lysosome dysfunction in these cells is, therefore, crucial. We identify cholesteryl hemiazelate (ChA), a stable oxidation end-product of cholesteryl-polyunsaturated fatty acid esters, as an inducer of lysosome malfunction in VSMCs. ChA-treated VSMCs acquire a foam-cell-like phenotype, characterized by enlarged lysosomes full of ChA and neutral lipids. The lysosomes are perinuclear and exhibit degradative capacity and cargo exit defects. Lysosome luminal pH is also altered. Even though the transcriptional response machinery and autophagy are not activated by ChA, the addition of recombinant lysosomal acid lipase (LAL) is able to rescue lysosome dysfunction. ChA significantly affects VSMC proliferation and migration, impacting atherosclerosis. In summary, this work shows that ChA is sufficient to induce lysosomal dysfunction in VSMCs, that, in ChA-treated VSMCs, neither lysosome biogenesis nor autophagy are triggered, and, finally, that recombinant LAL can be a therapeutic approach for lysosomal dysfunction

    Flavonoid as possible therapeutic targets against COVID-19: a scoping review of in silico studies

    Get PDF
    Objectives: This scoping review aims to present flavonoid compounds' promising effects and possible mechanisms of action on potential therapeutic targets in the SARS-CoV-2 infection process. Methods: A search of electronic databases such as PubMed and Scopus was carried out to evaluate the performance of substances from the flavonoid class at different stages of SARS-CoV-2 infection. Results: The search strategy yielded 382 articles after the exclusion of duplicates. During the screening process, 265 records were deemed as irrelevant. At the end of the full-text appraisal, 37 studies were considered eligible for data extraction and qualitative synthesis. All the studies used virtual molecular docking models to verify the affinity of compounds from the flavonoid class with crucial proteins in the replication cycle of the SARS-CoV-2 virus (Spike protein, PLpro, 3CLpro/ MPro, RdRP, and inhibition of the host's ACE II receptor). The flavonoids with more targets and lowest binding energies were: orientin, quercetin, epigallocatechin, narcissoside, silymarin, neohesperidin, delphinidin-3,5-diglucoside, and delphinidin-3-sambubioside-5-glucoside. Conclusion: These studies allow us to provide a basis for in vitro and in vivo assays to assist in developing drugs for the treatment and prevention of COVID-19. Graphical abstract: [Figure not available: see fulltext.] (c) 2023, The Author(s), under exclusive licence to Tehran University of Medical Sciences

    Using zeta-potential measurements to quantify peptide partition to lipid membranes

    Get PDF
    © The Author(s) 2011. This article is published with open access at Springerlink.com.Open Access: This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.Many cellular phenomena occur on the biomembranes. There are plenty of molecules (natural or xenobiotics) that interact directly or partially with the cell membrane. Biomolecules, such as several peptides (e.g., antimicrobial peptides) and proteins, exert their effects at the cell membrane level. This feature makes necessary investigating their interactions with lipids to clarify their mechanisms of action and side effects necessary. The determination of molecular lipid/water partition constants (Kp) is frequently used to quantify the extension of the interaction. The determination of this parameter has been achieved by using different methodologies, such as UV-Vis absorption spectrophotometry, fluorescence spectroscopy and ζ-potential measurements. In this work, we derived and tested a mathematical model to determine the Kp from ζ-potential data. The values obtained with this method were compared with those obtained by fluorescence spectroscopy, which is a regular technique used to quantify the interaction of intrinsically fluorescent peptides with selected biomembrane model systems. Two antimicrobial peptides (BP100 and pepR) were evaluated by this new method. The results obtained by this new methodology show that ζ-potential is a powerful technique to quantify peptide/lipid interactions of a wide variety of charged molecules, overcoming some of the limitations inherent to other techniques, such as the need for fluorescent labeling.This work was partially supported by project PTDC/QUI/ 69937/2006 from Fundação para a Ciência e Tecnologia-Ministério da Ciência, Tecnologia e Ensino Superior (FCT-MCTES, Portugal), and by Fundação Calouste Gulbenkian (Portugal). JMF and MMD also thank FCT-MCTES for grants IMM/BT/37-2010 and SFRH/BD/41750/2007, respectively

    Bioactive compounds as potential angiotensin-converting enzyme II inhibitors against COVID-19: a scoping review

    Get PDF
    Objective and design The current study aimed to summarize the evidence of compounds contained in plant species with the ability to block the angiotensin-converting enzyme 2 (ACE-II), through a scoping review. Methods PubMed and Scopus electronic databases were used for the systematic search and a manual search was performed Results Studies included were characterized as in silico. Among the 200 studies retrieved, 139 studies listed after the exclusion of duplicates and 74 were included for the full read. Among them, 32 studies were considered eligible for the qualitative synthesis. The most evaluated class of secondary metabolites was flavonoids with quercetin and curcumin as most actives substances and terpenes (isothymol, limonin, curcumenol, anabsinthin, and artemisinin). Other classes that were also evaluated were alkaloid, saponin, quinone, substances found in essential oils, and primary metabolites as the aminoacid l-tyrosine and the lipidic compound 2-monolinolenin. Conclusion This review suggests the most active substance from each class of metabolites, which presented the strongest affinity to the ACE-II receptor, what contributes as a basis for choosing compounds and directing the further experimental and clinical investigation on the applications these compounds in biotechnological and health processes as in COVID-19 pandemic

    Prediction of Antibacterial Activity from Physicochemical Properties of Antimicrobial Peptides

    Get PDF
    Consensus is gathering that antimicrobial peptides that exert their antibacterial action at the membrane level must reach a local concentration threshold to become active. Studies of peptide interaction with model membranes do identify such disruptive thresholds but demonstrations of the possible correlation of these with the in vivo onset of activity have only recently been proposed. In addition, such thresholds observed in model membranes occur at local peptide concentrations close to full membrane coverage. In this work we fully develop an interaction model of antimicrobial peptides with biological membranes; by exploring the consequences of the underlying partition formalism we arrive at a relationship that provides antibacterial activity prediction from two biophysical parameters: the affinity of the peptide to the membrane and the critical bound peptide to lipid ratio. A straightforward and robust method to implement this relationship, with potential application to high-throughput screening approaches, is presented and tested. In addition, disruptive thresholds in model membranes and the onset of antibacterial peptide activity are shown to occur over the same range of locally bound peptide concentrations (10 to 100 mM), which conciliates the two types of observations

    Bacillus sphaericus Binary Toxin Elicits Host Cell Autophagy as a Response to Intoxication

    Get PDF
    Bacillus sphaericus strains that produce the binary toxin (Bin) are highly toxic to Culex and Anopheles mosquitoes, and have been used since the late 1980s as a biopesticide for the control of these vectors of infectious disease agents. The Bin toxin produced by these strains targets mosquito larval midgut epithelial cells where it binds to Cpm1 (Culex pipiens maltase 1) a digestive enzyme, and causes severe intracellular damage, including a dramatic cytoplasmic vacuolation. The intoxication of mammalian epithelial MDCK cells engineered to express Cpm1 mimics the cytopathologies observed in mosquito enterocytes following Bin ingestion: pore formation and vacuolation. In this study we demonstrate that Bin-induced vacuolisation is a transient phenomenon that affects autolysosomes. In addition, we show that this vacuolisation is associated with induction of autophagy in intoxicated cells. Furthermore, we report that after internalization, Bin reaches the recycling endosomes but is not localized either within the vacuolating autolysosomes or within any other degradative compartment. Our observations reveal that Bin elicits autophagy as the cell's response to intoxication while protecting itself from degradation through trafficking towards the recycling pathways

    Which Factors Determine Spatial Segregation in the South American Opossums (Didelphis aurita and D. albiventris)? An Ecological Niche Modelling and Geometric Morphometrics Approach

    Get PDF
    Didelphis albiventris and D. aurita are Neotropical marsupials that share a unique evolutionary history and both are largely distributed throughout South America, being primarily allopatric throughout their ranges. In the Araucaria moist forest of Southern Brazil these species are sympatric and they might potentially compete having similar ecology. For this reason, they are ideal biological models to address questions about ecological character displacement and how closely related species might share their geographic space. Little is known about how two morphologically similar species of marsupials may affect each other through competition, if by competitive exclusion and competitive release. We combined ecological niche modeling and geometric morphometrics to explore the possible effects of competition on their distributional ranges and skull morphology. Ecological niche modeling was used to predict their potential distribution and this method enabled us to identify a case of biotic exclusion where the habit generalist D. albiventris is excluded by the presence of the specialist D. aurita. The morphometric analyses show that a degree of shape discrimination occurs between the species, strengthened by allometric differences, which possibly allowed them to occupy marginally different feeding niches supplemented by behavioral shift in contact areas. Overlap in skull morphology is shown between sympatric and allopatric specimens and a significant, but weak, shift in shape occurs only in D. aurita in sympatric areas. This could be a residual evidence of a higher past competition between both species, when contact zones were possibly larger than today. Therefore, the specialist D. aurita acts a biotic barrier to D. albiventris when niche diversity is not available for coexistence. On the other hand, when there is niche diversification (e.g. habitat mosaic), both species are capable to coexist with a minimal competitive effect on the morphology of D. aurita

    Estudo da formação de aderências e da cicatrização de anastomoses colônicas em ratos com sepse peritoneal induzida

    Get PDF
    OBJETIVO: Avaliar os efeitos da sepse abdominal sobre a formação de aderências e a cicatrização de anastomoses colônicas em ratos. MÉTODOS: 40 ratos distribuídos em dois grupos contendo 20 animais, para anastomose do cólon esquerdo na presença (grupo S) ou ausência (grupo N) de indução de sepse por ligadura e punção do ceco (CLP). Cada grupo foi dividido em subgrupos para eutanásia no terceiro (N3 e S3) ou sétimo (N7 e S7) dia de pós-operatório (DPO). Foi avaliada a quantidade de aderências e removido um segmento colônico contendo a anastomose para análise histopatológica, força de ruptura, hidroxiprolina e conteúdo de colágeno tecidual. RESULTADOS: Os animais submetidos à CLP apresentaram maior quantidade de aderências intra-abdominais tanto no 3° DPO (p=0,00) quanto no 7° DPO (p=0,00). Tiveram menores valores de força de ruptura no 3° DPO (p=0,00), porém maiores valores no 7° DPO (p=0,00). Não houve diferença na variação da concentração de hidroxiprolina, conteúdo de colágeno e histopatologia. CONCLUSÕES: A infecção peritoneal desencadeada por CLP aumentou a quantidade de aderências intra-cavitárias. Houve diminuição da resistência de anastomoses cólicas no 3° DPO, com posterior aumento no 7° DPO, sem efeito sobre os outros parâmetros da cicatrização. ________________________________________________________________________________ ABSTRACTPURPOSE: To evaluate the effects of abdominal sepsis on adhesion formation and colon anastomosis healing in rats. METHODS: Forty rats were distributed in two groups containing 20 rats each for left colon anastomosis in the presence (Group S) or absence (Group N) of induced sepsis by cecal ligation and puncture. Each group was divided into subgroups for euthanasia on the third (N3 and S3) or seventh (N7 or S7) post-operative day. The amount of adhesions was evaluated and a segment of the colon was removed for histopathologic analysis, bursting strength assessment, hydroxyproline and the determination of tissue collagen. RESULTS: The subjects which underwent cecal ligation and puncture presented a higher amount of intra-abdominal adherences in both third (p=0,00) and seventh (p=0,00) post-operatory days. Smaller bursting strengths were found in the S3 subgroup, and greater bursting strengths were found in the S7 subgroup. There was no difference in the variations on the concentrations of hydroxyproline, tissue collagen and histopathology. CONCLUSIONS: The peritoneal infection which was developed by cecal ligation and puncture raised the amount of intra-cavitary adhesions. There was a decrease in the amount of colonic anastomosis on the third post-operatory day with a following raise on the seventh without any effects on other healing parameters
    • …
    corecore