1,122 research outputs found

    Photon Total Cross-sections

    Get PDF
    We discuss present predictions for the total γγ\gamma \gamma and γp\gamma p cross-sections, highlighting why predictions differ. We present results from the Eikonal Minijet Model and improved predictions based on soft gluon resummation.Comment: 7 pages, 10 figures, LaTeX, requires espcrc2.sty, Talk presented by G. Pancheri at PHOTON-2003, International Meeting on Structure and Interactions of the Photon, Frascati, Italy, April 7-11, 200

    Rotational and Vibrational Dynamics of Interstitial Molecular Hydrogen

    Get PDF
    The calculation of the hindered roton-phonon energy levels of a hydrogen molecule in a confining potential with different symmetries is systematized for the case when the rotational angular momentum JJ is a good quantum number. One goal of this program is to interpret the energy-resolved neutron time of flight spectrum previously obtained for H2_{2}C60_{60}. This spectrum gives direct information on the energy level spectrum of H2_2 molecules confined to the octahedral interstitial sites of solid C60_{60}. We treat this problem of coupled translational and orientational degrees of freedom a) by construction of an effective Hamiltonian to describe the splitting of the manifold of states characterized by a given value of JJ and having a fixed total number of phonon excitations, b) by numerical solutions of the coupled translation-rotation problem on a discrete mesh of points in position space, and c) by a group theoretical symmetry analysis. Results obtained from these three different approaches are mutually consistent. The results of our calculations explain several hitherto uninterpreted aspects of the experimental observations, but show that a truly satisfactory orientational potential for the interaction of an H2_2 molecule with a surrounding array of C atoms has not yet been developed.Comment: 53 pages, 9 figures, to appear in Phys. Rev B (in press). Phys. Rev. B (in press

    Newtonian Analysis of Gravitational Waves from Naked Singularity

    Get PDF
    Spherical dust collapse generally forms a shell focusing naked singularity at the symmetric center. This naked singularity is massless. Further the Newtonian gravitational potential and speed of the dust fluid elements are everywhere much smaller than unity until the central shell focusing naked singularity formation if an appropriate initial condition is set up. Although such a situation is highly relativistic, the analysis by the Newtonian approximation scheme is available even in the vicinity of the space-time singularity. This remarkable feature makes the analysis of such singularity formation very easy. We investigate non-spherical even-parity matter perturbations in this scheme by complementary using numerical and semi-analytical approaches, and estimate linear gravitational waves generated in the neighborhood of the naked singularity by the quadrupole formula. The result shows good agreement with the relativistic perturbation analysis recently performed by Iguchi et al. The energy flux of the gravitational waves is finite but the space-time curvature carried by them diverges.Comment: 23 pages, 8 figure

    The Tevatron Higgs exclusion limits and theoretical uncertainties: a critical appraisal

    Get PDF
    We examine the exclusion limits set by the CDF and D0 experiments on the Standard Model Higgs boson mass from their searches at the Tevatron in the light of large theoretical uncertainties on the signal and background cross sections. We show that when these uncertainties are consistently taken into account, the sensitivity of the experiments becomes significantly lower and the currently excluded mass range MH=158M_H=158-175 GeV would be entirely reopened. The necessary luminosity required to recover the current sensitivity is found to be a factor of two higher than the present one.Comment: 11 pages, 5 Figures. Version published in Physics Letter B, including an erratu

    Infrared gluons, intrinsic transverse momentum and rising total cross-sections

    Get PDF
    We discuss the infrared limit for soft gluon kt-resummation and relate it to physical observables such as the intrinsic transverse momentum and the high energy limit of total cross-sections.Comment: 8 pages, 6 figures, Presented at Hadron Structure '09, Tatranska Strba, September 2009, Slovacchia, to be published in the Conference Proceeding

    On the fluctuations of jamming coverage upon random sequential adsorption on homogeneous and heterogeneous media

    Full text link
    The fluctuations of the jamming coverage upon Random Sequential Adsorption (RSA) are studied using both analytical and numerical techniques. Our main result shows that these fluctuations (characterized by σθJ\sigma_{\theta_J}) decay with the lattice size according to the power-law σθJL1/ν\sigma_{\theta_J} \propto L^{-1/ \nu}. The exponent ν\nu depends on the dimensionality DD of the substrate and the fractal dimension of the set where the RSA process actually takes place (dfd_f) according to ν=2/(2Ddf)\nu = 2 / (2D - d_f).This theoretical result is confirmed by means of extensive numerical simulations applied to the RSA of dimers on homogeneous and stochastic fractal substrates. Furthermore, our predictions are in excellent agreement with different previous numerical results. It is also shown that, studying correlated stochastic processes, one can define various fluctuating quantities designed to capture either the underlying physics of individual processes or that of the whole system. So, subtle differences in the definitions may lead to dramatically different physical interpretations of the results. Here, this statement is demonstrated for the case of RSA of dimers on binary alloys.Comment: 20 pages, 8 figure

    Total photoproduction cross-section at very high energy

    Get PDF
    In this paper we apply to photoproduction total cross-section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross-sections at TeV energies than models based on factorization but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference.Comment: 13 pages, 9 figures. Accepted for publication in EPJC. Changes concern added references, clarifications of the Soft Gluon Resummation method used in the paper, and other changes requested by the Journal referee which do not change the results of the original versio

    The apparent excess in the Higgs to di-photon rate at the LHC: New Physics or QCD uncertainties?

    Get PDF
    The Higgs boson with a mass MH126M_H \approx 126 GeV has been observed by the ATLAS and CMS experiments at the LHC and a total significance of about five standard deviations has been reported by both collaborations when the channels HγγH\to \gamma \gamma and HZZ4H\to ZZ \to 4\ell are combined. Nevertheless, while the rates in the later search channel appear to be in accord with those predicted in the Standard Model, there seems to be an excess of data in the case of the HγγH\to \gamma\gamma discovery channel. Before invoking new physics contributions to explain this excess in the di--photon Higgs rate, one should verify that standard QCD effects cannot account for it. We describe how the theoretical uncertainties in the Higgs boson cross section for the main production process at the LHC, ggHgg \to H, which are known to be large, should be incorporated in practice. We further show that the discrepancy between the theoretical prediction and the measured value of the ggHγγgg \to H \to \gamma \gamma rate, reduces to about one standard deviation when the QCD uncertainties are taken into account.Comment: LaTeX, 2 figures, 9 pages. Final version published in Physics Letters B with minor typos correcte

    Activated Transport in AMTEC Electrodes

    Get PDF
    Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and pre-exponential, but at least two activated processes may be operative, and the activation parameters should be expected to depend on the alkali metal activity gradient that the electrode experiences. In the case of Pt/W/Mn electrodes operated for 2500 hours, limiting currents varied with electrode thickness, and the activation parameters could be assigned primarily to the surface/grain boundary diffusion process. 17 refs

    Can Gravitational Waves Prevent Inflation?

    Get PDF
    To investigate the cosmic no hair conjecture, we analyze numerically 1-dimensional plane symmetrical inhomogeneities due to gravitational waves in vacuum spacetimes with a positive cosmological constant. Assuming periodic gravitational pulse waves initially, we study the time evolution of those waves and the nature of their collisions. As measures of inhomogeneity on each hypersurface, we use the 3-dimensional Riemann invariant I (3) ⁣Rijkl (3) ⁣Rijkl{\cal I}\equiv {}~^{(3)\!}R_{ijkl}~^{(3)\!}R^{ijkl} and the electric and magnetic parts of the Weyl tensor. We find a temporal growth of the curvature in the waves' collision region, but the overall expansion of the universe later overcomes this effect. No singularity appears and the result is a ``no hair" de Sitter spacetime. The waves we study have amplitudes between 0.020ΛI1/2125.0Λ0.020\Lambda \leq {\cal I}^{1/2} \leq 125.0\Lambda and widths between 0.080lHl2.5lH0.080l_H \leq l \leq 2.5l_H, where lH=(Λ/3)1/2l_H=(\Lambda/3)^{-1/2}, the horizon scale of de Sitter spacetime. This supports the cosmic no hair conjecture.Comment: LaTeX, 11 pages, 3 figures are available on request <To [email protected] (Hisa-aki SHINKAI)>, WU-AP/29/9
    corecore