Spherical dust collapse generally forms a shell focusing naked singularity at
the symmetric center. This naked singularity is massless. Further the Newtonian
gravitational potential and speed of the dust fluid elements are everywhere
much smaller than unity until the central shell focusing naked singularity
formation if an appropriate initial condition is set up. Although such a
situation is highly relativistic, the analysis by the Newtonian approximation
scheme is available even in the vicinity of the space-time singularity. This
remarkable feature makes the analysis of such singularity formation very easy.
We investigate non-spherical even-parity matter perturbations in this scheme by
complementary using numerical and semi-analytical approaches, and estimate
linear gravitational waves generated in the neighborhood of the naked
singularity by the quadrupole formula. The result shows good agreement with the
relativistic perturbation analysis recently performed by Iguchi et al. The
energy flux of the gravitational waves is finite but the space-time curvature
carried by them diverges.Comment: 23 pages, 8 figure