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Rotational and Vibrational Dynamics of Interstitial Molecular Hydrogen

Abstract
The calculation of the hindered roton-phonon energy levels of a hydrogen molecule in a confining potential
with different symmetries is systematized for the case when the rotational angular momentum J is a good
quantum number. One goal of this program is to interpret the energy-resolved neutron time-of-flight
spectrum previously obtained for H2C60. This spectrum gives direct information on the energy-level
spectrum of H2 molecules confined to the octahedral interstitial sites of solid C60. We treat this problem of
coupled translational and orientational degrees of freedom (i) by construction of an effective Hamiltonian to
describe the splitting of the manifold of states characterized by a given value of J and having a fixed total
number of phonon excitations, (ii) by numerical solutions of the coupled translation-rotation problem on a
discrete mesh of points in position space, and (iii) by a group theoretical symmetry analysis. Results obtained
from these three different approaches are mutually consistent. The results of our calculations explain several
aspects of the experimental observations, but show that a truly satisfactory orientational potential for the
interaction of an H2 molecule with a surrounding array of C atoms has not yet been developed.
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Rotational and vibrational dynamics of interstitial molecular hydrogen
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The calculation of the hindered roton-phonon energy levels of a hydrogen molecule in a confining potential
with different symmetries is systematized for the case when the rotational angular momentumJ is a good
quantum number. One goal of this program is to interpret the energy-resolved neutron time-of-flight spectrum
previously obtained for H2C60. This spectrum gives direct information on the energy-level spectrum of H2

molecules confined to the octahedral interstitial sites of solid C60. We treat this problem of coupled transla-
tional and orientational degrees of freedom~i! by construction of an effective Hamiltonian to describe the
splitting of the manifold of states characterized by a given value ofJ and having a fixed total number of
phonon excitations,~ii ! by numerical solutions of the coupled translation-rotation problem on a discrete mesh
of points in position space, and~iii ! by a group theoretical symmetry analysis. Results obtained from these
three different approaches are mutually consistent. The results of our calculations explain several aspects of the
experimental observations, but show that a truly satisfactory orientational potential for the interaction of an H2

molecule with a surrounding array of C atoms has not yet been developed.

DOI: 10.1103/PhysRevB.66.214301 PACS number~s!: 78.70.Nx, 34.50.Ez, 82.80.Gk, 71.20.Tx

I. INTRODUCTION

The study of rotational and vibrational dynamics of guest
molecules~i.e., CO, O2, H2, etc.! trapped in porous media
such as fullerenes, zeolites, and graphite has recently become
an active subject both experimentally and theoretically.1–5

This is because such studies can yield valuable information
about the host-guest interactions which could be important
for several technical applications such as gas separation and
hydrogen storage.1–3 In particular, hydrogen molecules
trapped in interstitial cavities in solid C60 as well as hydro-
gen molecules embedded in nanotube ropes are of interest
due to quantum behavior of hydrogen molecules in quasi-
zero and one-dimensional sites.2,3,5

In this paper, we develop a detailed analysis of coupled
rotational and vibrational dynamics of a molecular hydrogen
encapsulated in a solid using numerical, perturbative, and
group theoretical methods. In particular we will be interested
in what one might call the ‘‘weak-coupling limit,’’ when the
interaction between molecular rotations and center-of-mass
translations is weak enough that the rotational angular mo-
mentum quantum numberJ is a good quantum number. This
limit is almost never satisfied except for very light molecules
like hydrogen or deuterium. The energy levels of a free ro-
tator are

EJ5BJ~J11!, ~1!

whereB5\2/(2I ), I is the moment of inertia of the mol-
ecule, andEJ is (2J11)-fold degenerate. For H2 the rota-
tional constant 2B has the value 60 cm21, 14.7 meV, or
B/k585 K ~and the corresponding values for D2 are half as
large!, so that the energy separation between differentJ lev-
els is large enough that oftenJ is a good quantum number.

This is certainly true for solids consisting of these molecules
unless the pressure is quite large.~For a review of the prop-
erties of the hydrogen molecule and solid hydrogen see Ref.
6.!

We have been led to consider this phenomenon in view of
an experimental study of energy spectra of H2 and D2 in-
serted into the octahedral interstitial sites in solid C60 carried
out by neutron time-of-flight techniques.5 In considering this
phenomenon we should keep in mind the following experi-
mental facts concerning the host solid of C60. The centers of
the C60 molecules form an fcc lattice.7 At temperature above
Tc , whereTc is about 260 K, the molecules are orientation-
ally disordered. AtT5Tc long-range orientational ordering
occurs8 and the molecules are ordered into four sublattices as

described byPa3̄ symmetry.9–12 In the orientationally disor-
dered phase the local symmetry at the octahedral interstitial
site is indeed that of the point groupOh . In the presence of
orientational ordering the symmetry of what was the ‘‘octa-
hedral’’ interstitial site is now reduced to a uniaxial symme-
try, specifically that of point groupS6.13 In experiments, hy-
drogen molecules are stable in the octahedral interstitial site
only for temperatures well belowTc ~where the interstitial
site does not actually have octahedral symmetry!.

While a general understanding of the time-of-flight ex-
periments was presented,5 some of the finer details of the
experiment remained unexplained. For instance, the shift in
the energy associated with ortho-para (J51→J50) conver-
sion in the interstitial relative to its value for free molecules
was not understood. Also the feature in the energy gain spec-
trum at about twice the ortho-para conversion energy was not
unambiguously identified. These issues are both addressed in
this paper. More generally we give a calculation of the cross
section for neutron energy loss for comparison with the ob-
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served time-of-flight spectrum. For that purpose we need not
only to consider the cross section for para-ortho conversion
as compared to phonon creation, but also to calculate the
phonon excitations of (J51) molecules. These calculations
require us to develop and implement a scheme for treating
coupled translations and rotations. In this paper we present a
systematic analysis of the simplest case of this coupling
which occurs when the quantum numberJ characterizing
free rotation remains a good quantum number. In that case
the well-known numerical schemes for solving the transla-
tion problem can be easily extended to include the effect of
the coupling to rotations. In addition, we also give analytic
expressions obtained by treating this coupling within pertur-
bation theory. As we will see, this analytic development en-
ables us to interpret many of the numerical results in a mean-
ingful way. In addition, we analyze in detail various
simplified models which illustrate our group theoretical
analysis of the symmetry present in the system of coupled
translations and rotations. This analysis indicates that argu-
ments for the degeneracies of coupled translation-rotation
modes based on simple classical concepts are incorrect. In
summary: in this paper we present an analysis based on nu-
merical, perturbative, and group theoretical methods.

Up to now there have not been many theoretical studies of
energy levels in such irregular geometries like the octahedral
interstitial sites in C60. A notable exception is the work of
van der Avoird and collaborators14 on CO in C60. That work
examined an even more complicated situation in which the
rotational and translation degrees of freedom interacted
strongly. As a result, the problem was analyzed numerically.
In contrast, for the present problem FitzGeraldet al.5 applied
a number of analytic and semianalytic techniques to the the-
oretical study the spectra of hydrogen molecules in C60. This
paper may be regarded as an extension and systematization
of their approach.

II. GENERAL FORMULATION

Clearly the first step is to establish a satisfactory potential
for the intercalated hydrogen molecule. This potential func-
tion V(r ,V) gives the energy of a hydrogen molecule whose
center of mass is atr and whose orientation is specified by
V[(u,f). A convenient starting point is to use an atom-
atom potential15 to describe the interaction between each of
the two hydrogen atoms and the atoms in the confining struc-
ture. Unless otherwise indicated, all the results reported in
this paper are obtained from the same WS77 potential,15

2A/r 61B exp(2Cr), that is used in Ref. 5~where A
55.94 eV Å6, B5678.2 eV, andC53.67 Å21).

In this paper we will mainly consider the octahedral in-
terstitial site in solid C60, but many of the considerations
apply with slight modification to molecules confined within
other structures such as single wall carbon nanotubes.16 The
determination of the potentialV(r ,V) for H2 in solid C60 is
discussed in Appendix A. From the numerical evaluation of
this potential we have extracted the expansion coefficients
when it is written in the following canonical form:

V~r ,V!5V0~r !1 (
l 52,4,•••

(
m52 l

l

Al
m~r !Yl

m~V!. ~2!

We assume~and it is generally true! that the orientational
energies which are relevant are much less than the smallest
energy difference between successiveJ levels of a molecule
(10B for an ortho molecule and 6B for a para molecule!.
Accordingly, we may consider only that part of the potential
which is diagonal inJ. When the potential is written in the
form of Eq. ~2!, it is easy to implement the truncation to
terms diagonal inJ. So for a fixed value ofJ we have the
HamiltonianHJ as

HJ5
p2

2m
1V0~r !1BJ~J11!I1 (

l 52,4,•••
(

m,m8
Al

m2m8~r !

3@ uJm&^JmuYl
m2m8~V!uJm8&^Jm8u#

52
\2

2m
¹21V0~r !1BJ~J11!1VJ~r !, ~3!

whereVJ(r ) is the orientationally dependent part of the po-
tential ~the terms involvingAl

m) and I is the unit operator.
Furthermore, we consider the angular-dependent term in this
expansion to be a perturbation on the first term,V0(r ). For
each value ofJ the HamiltonianHJ will give a manifold of
states which is the direct product of a manifold correspond-
ing to various numbers of localized phonons being excited
with the manifold of (2J11) states having different values
of mJ . An important simplification is that spherical harmon-
ics with l .2J have no nonzero matrix elements in the mani-
fold of states of angular momentumJ.

Note that apart from the kinetic energy, this Hamiltonian
is a strictly local operator. Thus we solve the eigenvalue
problem on a discrete mesh of points on a cube centered at
the octahedral site when the wave function is required to
vanish on the boundary of the cube. Each edge of the cube is
taken to be@2L,L# with mesh point spacing ofdL. In this
scheme the wave function at each mesh point is a
(2J11)-component vector. We are mainly concerned with
the manifoldJ50 andJ51, in which case the problem is
numerically not significantly harder than for a scalar prob-
lem. Even though the resulting matrix size is very large, it is
a block band matrix and is very sparse. The numerical results
reported here were obtained fromL51.65 Å and dL
50.075 Å, which requires diagonalization of a matrixn
3n where n5273 375). However, we confirmed that a
coarse mesh points withL51.2 Å and dL50.17 Å gives
almost the same results~where the matrix size isn
514 739). The large sparse matrix eigenvalue problem is
solved using the packageARPACK.17

Since numerical results sometimes do not provide com-
plete insight into the nature of the solutions, we have also
used perturbation theory to understand the results. In this
approach we treatVJ(r ) in Eq. ~3! as the perturbation. The
unperturbed problem, apart from the additive energyBJ(J
11) is thus that for translations of the spherical (J50) mol-
ecule. This spectrum is not too different from that of a three-
dimensional harmonic oscillator. Accordingly, to qualita-
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tively interpret our more accurate numerical results, we
apply perturbation theory in which we develop an effective
Hamiltonian18 to describe the splitting of this manifold
which is characterized by a value ofJ and of N, the total
number of phonon excitations.~The perturbative effects due
to coupling between manifolds of differentJ is negligibly
small for hydrogen in C60.5! This effective Hamiltonian is a
matrix of dimensionalityD, where D5(2J11)(N11)(N
12)/2 and schematically is of the form

H~N,J!5BJ~J11!I1Hphonon1VJ
DIAG2VJ

OFF1

E VJ
OFF,

~4!

whereHphonon gives the energy of the various states with a
total of N phonons. These energies are just those calculated
for a (J50) molecule. AlsoVJ

DIAG is the part ofVJ which is
diagonalwith respect to the number of phonons, VJ

OFF is the
part of VJ which is off-diagonalwith respect to the number
of phonons, andE is the change in phonon energy caused by
VJ

OFF.
This effective Hamiltonian is defined by its matrix ele-

ments as

^N,a;J,M uH~J,N!uN,a8;J,M 8&

5@BJ~J11!1EN,a#da,a8dM ,M8

1(
l 51

J

^N,auA2l
M2M8~r !uN,a8&

3^JMuY2l
M2M8~V!uJM8&1 (

N8ÞN
(

l ,l 851

J

(
m

(
b51

kN8

3@EN,a2EN8,b#21^N,auA2l
M2m~r !uN8,b&

3^N8,buA2l 8
m2M8~r !uN,a8&^JMuY2l

M2m~V!uJm&

3^JmuY2l 8
m2M8~V!uJM8&, ~5!

wherekN5(N11)(N12)/2 and the states withN phonons
are labeledN,a, wherea runs from 1 tokN .

We now briefly discuss how theAl
m’s of Eq. ~2! are ob-

tained from the atom-atom potential between each H atom
and each carbon atom. Here we will assume that the atom-
atom potential is of the formF(ur i2rHu), wherer i and rH
are the displacements of thei th carbon and of the H atom,
respectively, relative to the center of the H2 molecule. For
this form of potential, we show in Appendix A that

A2
m52p(

i
Y2

m~ r̂ i !* E
21

1

~3x221!

3F~@r i
22 1

4 r21rxri #
1/2!dx, ~6!

wherer is the separation between H atoms in the H2 mol-
ecule and the sum overi is over all relevant neighboring
carbon atoms. It is instructive to expand this expression in
r/r i , which yields

A2
m5

1

4
r2S 8p

15D(
i

S F92
F8

r i
DY2

m~ r̂ i !1o~r4/r i
4!, ~7!

where F9 and F8 are the second and first derivatives of
F(r i).

This expansion is good enough to reproduce most of the
results discussed in this paper. We note that theAl

m’s ~i.e., the
orientational potential! are zero for a harmonic potential@i.e.,
F(r i)5 1

2 kri
2] because the prefactor (F92F8/r i) is zero.

This can be also seen easily as follows. Assuming an atom-
atom potential between each H atom and the C atoms in the
adjacent C60 molecules, we may write the potential of an H2
molecule as

V~r ;V!5Va~r1 1
2 rn̂!1Va~r2 1

2 rn̂!, ~8!

whereVa is the potential of a single atom due to the entire
octahedral cage in which it is confined,n̂ is a unit vector
along the axis of the molecule, andr is the separation be-
tween atoms in the molecule. As we shall see, the total po-
tential is nearly isotropic. So we write

Va~r !5 1
2 kr21dr 4. ~9!

When we substitute this into Eq.~8!, we obtain the result

V~r ;V!5V0~r !12d~r 2r2cos2u r ,n2 1
2 !, ~10!

whereu r ,n is the angle between the vectorsr andn̂ andV0 is
independent ofu r ,n . The point is that the orientationally de-
pendent part of the interaction depends on the anharmonic-
ity: for a purely harmonic and isotropic interactionVa , the
total potential energy is independent of the molecular orien-
tation. Thus we expect rotation-translation coupling to be
weak. On the other hand in nanotubes, where the quadratic
term isanisotropic, this coupling will be more important.16

III. ENERGY SPECTRUM OF A „JÄ0… H2 MOLECULE

We start by considering the eigenvalue spectrum ofH0 in
which the orientational dependence of the potential is ne-
glected. In this approximation, apart from the additive con-
stant BJ(J11), the total energy~rotational plus transla-
tional! is the same as that of a (J50) molecule. For most
purposes a (J50) molecule may be considered to be a
spherical molecule because the orientational wave function
Y0

0(V) is uniform over all orientations. Each eigenfunction
of H0(J) is the product of a rotational function taken from
the manifold of 2J11 degenerate orientational wave func-
tions and a translational wave function which represents an
eigenfunction for a spherical molecule confined to a cage.
These translational wave functions satisfy

H0ck~r !5S p2

2m
1V0~r ! Dck~r !5Ekck~r !, ~11!

whereV0(r ) is the potential discussed in Appendix A. The
indexk labels states which we might otherwise label by three
indices, each quantum number characterizing the number of
excitations in each direction. Note that these unperturbed so-
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lutions do not involve the coupling between rotations and
translations. As discussed above, these eigenfunctions were
obtained by converting the continuum equation~11! into a
discrete equation on a mesh of points and solving the result-
ing matrix eigenvalue problem using a sparse matrix
routine.17

Since it happens that the energy levels and eigenfunctions
we obtained numerically are not qualitatively different from
those of a spherical harmonic oscillator, we first study the
energy spectrum as perturbationsd, k, and l are sequen-
tially turned on in the following potential:

V~r !5 1
2 kr21dr 41k~x41y41z42 3

5 r 4!

1l~xy1yz1zx!. ~12!

Figure 1 shows the evolution of the energy spectrum as per-
turbations are sequentially introduced which take the spheri-
cal harmonic oscillator into the actual lower symmetry of a

molecule in an octahedral interstitial site. In the left-most
panel we show the energy levels for a spherical harmonic
oscillator, with \v adjusted to correspond to the single-
phonon levels of H2 in an octahedral interstitial site in C60.
Note that the levels are highly degenerate because the energy
depends only on the total number of quanta. The symmetry
of the Hamiltonian is U(3), the group of unitary three-
dimensional matrices. We now add to this potential an anhar-
monic term of the formdr 4. This perturbation lowers the
symmetry to that of the rotation group in three dimensions.
As is well known, each eigenfunction in a generic spheri-
cally symmetric potential can be labeled by the magnitude of
the orbital angular momentumL. Thus the single phonon
levels are unsplit by this anharmonic perturbation and are
now labeled as angular momentumL51 states, whereas the
two phonon levels split into a manifold of fiveL52 states
and oneL50 state and similarly for states with more than
two phonons. In Fig. 1 we have taken the constantd to be
that which best describes the anharmonicity of H2 in C60.
The energies of the perturbed levels are given in Table I.

Next, we consider what happens when the spherical oscil-
lator potential is augmented by a cubic symmetry potential of
the form k(x41y41z42 3

5 r 4). This potential is appropriate
for a spherical molecule in an octahedral interstitial when the
C60 are orientationally disordered and have anFm3m crystal
structure.7 The degeneracy associated with spherical symme-
try is lifted,19 but as shown here one retains cubic symmetry,
so the three one-phonon states which transform asx, y, andz
are degenerate. The two-phonon states are of three different
symmetries. One (t2g) transforms likexy, xz, andyz. This is
the lowest level. The next highest level is thes-wave sym-
metric combination which transforms likex21y21z2. Then
one has a doublet ofd-wave (e2g) symmetry. This classifi-
cation scheme is continued in the higher-energy levels.
Although we are not dealing with harmonic phonons, it
is still useful to consider manifolds characterized by the
quantum numbersJ and N, which are respectively the

FIG. 1. Energy levels of a spherical (J50) H2 molecule con-
fined in various ways. Here~g! is the degeneracy and the symmetry
labels are given. Left: The molecule is in a spherical harmonic
potentialV(r )5

1
2 k(x21y21z2) or an anharmonic spherically sym-

metric potential~i.e., a generic spherically symmetric potential!. For
a harmonic spherically symmetric potential the energy depends only
on N, the total number of phonon excitations in the oscillators along
the three coordinate directions. For a spherically symmetric poten-
tial eigenstates are characterized by their total orbital angular mo-
mentumL. Center: the molecule is in a potential appropriate to the
octahedral interstitial site of orientationally disordered (Fm3m)
solid C60. Right: the molecule is in a potential appropriate to the

octahedral interstitial site of orientationally ordered (Pa3̄) solid
C60, in which case the site symmetry isS6. The potentials used for
the interstitial cases are discussed in Appendix A.

TABLE I. Effect of a spherical symmetric perturbation onU3

states. TheU3 states are characterized byN, the total number of
harmonic phonons. Wave functions in a spherical potential are char-
acterized by angular momentumK. Here we give the effect of the
perturbationD(r /s)4, where^r 2&53s2 for the isotropic harmonic
oscillator in three spatial dimensions. In the last column we give the
shift in the average energy of the multiplet of states of a given value
of N.

N N,K Energy Avg.E

0 ~0,0! 15 D 15 D

1 ~1,1! 35 D 35 D

2 ~2,0! 75 D 65 D

~2,2! 63 D

3 ~3,1! 119 D 105 D

~3,3! 99 D

T. YILDIRIM AND A. B. HARRIS PHYSICAL REVIEW B 66, 214301 ~2002!
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rotational angular momentum and the total number of
phonons, at least up toN53. Quantitative results are given
in Table II.

Finally, in the right-most panel of Fig. 1 we show the
further reduction in degeneracy which occurs when the octa-
hedral interstitial is surrounded by C60 molecules which have
the long-range order associated with thePa3̄ crystal
structure.9–12 In this case, each interstitial is uniaxial~with
symmetryS6) rather than octahedral. Accordingly, we intro-
duce a potential of the forml(xy1yz1zx)[ 1

2 l(3j2

2r 2), where thej axis is taken to lie along the threefold
axis of the interstitial site. There are four symmetry related
interstitial sites, each of which has its threefold axis along a
different @1,1,1# direction. The resolution of degeneracy in
the presence of this uniaxial perturbation is also given in
Table II. In all these cases, no interactions between rotations
and translations are involved.

We have solved the eigenvalue problem of Eq.~11! on a
mesh of points and obtained the results given in Table III.
Results labeled ‘‘Octahedral’’ are those for the orientation-
ally disordered phase, where each C60 molecule is replaced
by a sphere of carbon atoms as is discussed in Ref. 5. Since
these numerical results lead to manifolds of energy levels
associated with a given number of phonons and the degen-
eracies of these manifolds are as expected from our general
discussion above, we conclude that the potential seen by a
spherical H2 molecule in the low-lying phonon levels is not
very different from that of a spherical harmonic oscillator.
However, as noted in Ref. 5, the effective harmonic potential
must be taken to be a self-consistently renormalized potential
to take account of the larger zero-point motion.

IV. ENERGY SPECTRUM OF A JÄ1 MOLECULE

We now discuss the energy spectrum of an ortho molecule
with (J51). As we have seen for (J50) molecules, our

TABLE II. Energy-level systematics for a (J50) molecule in an octahedral interstitial site of C60. Here
we show the removal of degeneracy from a manifold of initial symmetryI to manifolds of final symmetryF
due to a perturbationV, as calculated in lowest-order perturbation theory. HereN is the total number of
phonons,K is the angular momentum, and the other group theoretical labels are as in Fig. 1. We give a typical
eigenfunctionc to illustrate the symmetry. Hered is the degeneracy~Deg.! of the manifold ands25^x2&
5^y2&5^z2&. Here the coordinate axes coincide with the cubic@100# directions.

I c V c F Deg. Energy

N52,K52 r 2Y2
M(V) k(x41y41z42

3
5 r 4) (x22y2) Eg 2 36

5 ks4

xy T2g 3 2
24
5 ks4

N53,K53 r 3Y3
M(V) k(x41y41z42

3
5 r 4) (x32

3
5 xr2) T1u 3 36

5 ks4

x(y22z2) T2u 3 2
12
5 ks4

xyz A2u 1 2
72
5 ks4

N51,K51,T1u rY1
M(V) l(xy1yz1zx) Eu 2 2ls2

Au 1 2ls2

N52,K52,T2g xy l(xy1yz1zx) Eg 2 2ls2

Ag 1 2ls2

N53,K53,T2u x(y22z2) l(xy1yz1zx) Eu 2 3
2 ls2

Au 1 23ls2

N53,K53,T1u (x32
3
5 xr2) l(xy1yz1zx) Eu 2 3

10ls2

Au 1 2
3
5 ls2

N53,K51,T1u x(r 22
1
3 s2) l(xy1yz1zx) Eu 2 3ls2

Au 1 26ls2

TABLE III. Phonon levels for a (J50) H2 molecule in an oc-
tahedral site for orientationally ordered and disordered C20, respec-
tively. Energies~meV! are with respect to the ground-state energy
E0,1. The symmetry of each manifold of degenerate levels can be
read from Fig. 1.

EN,a Octahedral Pa3̄ (S6)

N a

1 1 14.38 13.16
1 2,3 14.38 14.47

2 1 28.26 26.69
2 2,3 28.26 27.49
2 4 30.69 30.41
2 5,6 31.73 31.39

3 1 41.62 40.10
3 2,3 44.39 42.40a

3 4 44.39 42.42a

3 5,6 45.23 44.40
3 7 45.23 45.83
3 8,9 50.07 49.36
3 10 50.07 49.85

aThese energies are accidentally almost identical. However, group
theory indicates that these levels are generically nondegenerate.
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numerical results indicate that forN up to, say, 3, one can
clearly identify the manifold ofN phonons. We therefore
discuss the systematics of these manifolds.

A. Zero-phonon manifold

We first consider the case ofJ51 with N50 phonons.
This manifold is described by the effective Hamiltonian

H5~2B1DE!I1d~Jz
22 2

3 !. ~13!

The splittingd must be zero when C60 is orientationally dis-
ordered. From Eq.~5! one sees that because the spherical
harmonics are traceless, the average energy shiftDE has
nonzero contributions only from terms which involve cou-
pling to excited phonon states.~In Ref. 5 a negligibly small
shift was found due to off-diagonal effects inJ which we
ignore here.! From Eq.~5! we find that

DE52
1

3 (
NÞ0,a

EN,a
21 (

m,t
u^0,1uA2

t~r !uN,a&u2u

3^1~m1t!uY2
t~V!u1m&u2. ~14!

To implement this equation, we first constructAl
m(r ) as dis-

cussed in Eq.~6!. Then matrix elements ofA2
M(r ) are taken

between phonon states for aJ50 molecule which we ob-
tained previously and which are labeledN,a (u0,1& being the
phonon ground state!. Thereby we obtained the results given
in Tables IV and V. In Eq.~14! the matrix elements of
spherical harmonicsY2

M(V) are taken between orientational
states labeled byJ andJz . To evaluateDE we use

(
m

u^1~m1t!uY2
t~V!u1m&u25

3

10p
~15!

so that

DE52
1

10p (
NÞ0,a

EN,a
21 (

t
u^0,1uA2

t~r !uN,a&u2. ~16!

In Appendix B we give a model calculation of an H2
molecule in a spherical cavity from which we evaluate Eq.
~16! to give DE520.14 meV. In this calculation the trans-
lational wave functions are assumed to be those of a har-
monic oscillator with^r 2&50.1875 Å2. As noted, the result
is very sensitive to the value used for^r 2&. For octahedral
symmetry~i.e., for orientationally disordered C60) we evalu-
ate Eq.~16! using the data in Table IV. Thereby we find a
shift DE520.133 meV. The same approach using our nu-
merical solutions for the phonon states of a (J50) molecule
for the orientationally orderedPa3̄ phase yields the result,
DE520.141 meV, compared to the experimental value5

DE520.35 meV. Again we mention that a small change in
parameters could easily lead to a much larger calculated
value ofDE. From the numerical solution for the three com-
ponent wave function of a (J51) molecule on a mesh of
points, we obtained the valueDE520.16 for the Pa3̄
phase. The various numerical results forDE are summarized
in Table VI.

From Eq.~5! we also find the splitting~in thePa3̄ phase!
to be

TABLE IV. Matrix elements of̂ NauA2
t(r )u01& ~in meV! for H2

in octahedral andS6 potential, respectively. Elements not listed are
expected to be zero by symmetry. Numerically such elements were
found to be very small. For this table the wave functions within
each degenerate manifold were chosen to make the matrix elements

of A2
t(r ) as simple as possible. ForPa3̄ symmetry, thez axis is

taken to be the local threefold axis. Therefore the octahedral wave

functions are not necessarily identical to thePa3̄ wave functions.

^NauA2
t(r )u01& Octahedrala Pa3̄ (S6)

N a t

0 1 0 ~0,0! (21.286,0)
2 1 0 ~0,0! (20.506,0)
2 1 1 (a,0) ~0,0!
2 1 2 ~0,0! ~0,0!
2 2 1 (0,a) (20.176,20.106)
2 3 2 (0,a) (2.413,22.388)
2 4 0 ~0,0! (20.224,0)
2 5 0 ~0,0! ~0,0!
2 5 2 (b,0) (26.500,21.754)
2 6 0 (A2b,0) ~0,0!
2 6 1 ~0,0! (28.862,21.400)

aOur numerical results givea50.859 andb55.662~in meV!.

TABLE V. Nonzero matrix elements of̂1auA2
t(r )u1b& ~in

meV! for H2 in octahedral and S6 potential, respectively. We also
note that ^1auA2

t(r )u1b&5^1buA2
t(r )u1a& and ^1auA2

2t(r )u1b&
5(21)t^1auA2

t(r )u1b&* . For the octahedral symmetry, the wave
functions within each degenerate manifold were chosen to make the
matrix elements ofA2

t(r ) as simple as possible.

^1auA2
t(r )u1b& Octahedral Pa3̄ (S6)

t a b

0 1 1 (23.853,0) (22.020,0)
0 2 2 (23.853,0) (21.326,0)
0 3 3 ~7.708,0! (21.326,0)
1 1 2 ~0,0! (22.109,21.131)
1 1 3 ~0,0.881! (1.137,22.104)
1 2 2 ~0,0! ~1.534,2.440!
1 2 3 (20.881,0) (2.435,21.533)
1 3 3 ~0,0! (21.531,22.442)

2 1 1 (24.119,0) ~0,0!
2 1 2 ~0,0.880! (20.225,23.022)
2 1 3 ~0,0! (23.022,0.226)
2 2 2 ~0,0! ~0.560,0.835!
2 2 3 ~0,0! (20.830,0.556)
2 3 3 ~0,0! (20.565,20.831)
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d52
3^0,1uA2

0u0,1&

A20p
1

3

20p (
e

E~e!21@ u^0,1uA2
0~r !ue&u2

1u^0,1uA2
1~r !ue&u222u^0,1uA2

2~r !ue&u2#, ~17!

where the quantization axis is taken to lie along the threefold
axis of symmetry of the interstitial site. Using the matrix
elements given in Table IV, we find that the contribution to
the splittingd comes almost exclusively from the diagonal
term ^0,1uA2

0u0,1& and we obtain the results listed in
Table VI.

B. One-phonon manifold

1. Numerical results

Next we consider the manifoldJ51 with N51 phonon.
Again only Yl

m with l 52 contributes, so that we may write

H~1,1!am;a8m8[^amuH~N51,J51!ua8m8&

5@2B1E01\va#dm,m8da,a8

1^1auA2
m2m8~r !u1a8&

3^1muY2
m2m8~V!u1m8&

2 (
N8Þ1

(
a951

kN8

(
m9

1

EN8,a92E1,a

3^1auA2
m2m9~r !uN8a9&

3^N8a9uA2
m92m8~r !u1a8&

3^1muY2
m2m9~V!u1m9&

3^1m9uY2
m92m8~V!u1m8&. ~18!

This is a 939 matrix, which gives the 9 (J51,N51) levels.
Since the first term gives rise to the removal of degeneracy
expected from group theoretical considerations, we did not
include the second term in our numerical evaluations. This
procedure was sufficiently accurate to provide a useful check
on the validity of the more accurate numerical solutions for
the three-component wave functions of our set of mesh
points. In Table VII these numerical results~‘‘full mesh’’ ! are
given and are compared to the results using perturbation

TABLE VI. Shift of the center of gravity~CG! and splitting~in meV! of the (J51,N50) manifold when
the nominally octahedral site has octahedral andS6 symmetry.

Our calculations Experimentd

Quantity Octahedral (Oh) Pa3̄ (S6) Pa3̄ (S6)

Shift of CGa 20.134 20.141 0.35
Shift of CGb 20.16 0.35
Splitting first orderc 0 0.487
Second orderc 0 20.010
Totalc 0 0.477 0.70
Totalb 0 0.46 0.70

aPerturbation result of Eq.~16!.
bObtained by direct diagonalization of Eq.~3!.
cPerturbation result of Eq.~17!.
dFrom Ref. 5.

TABLE VII. Energy ~in meV! of J51 single-phonon states where zero-of-energy is taken to be 2B.

Octahedral (Oh) Pa3̄ (S6)

C Full mesha Perturbationb C Full mesha Perturbationb

T1g 13.11 13.14 Ag 12.59 12.52
T1g 13.11 13.14 Eg 12.82 12.87
T1g 13.11 13.14 Eg 12.82 12.87
T2g 13.6 13.68 Eg 13.47 13.51
T2g 13.6 13.68 Eg 13.47 13.51
T2g 13.6 13.68 Ag 14.20 14.16
Ag 15.61 15.78 Ag 15.75 15.31
Eg 16.46. 16.60 Eg 16.60 15.79
Eg 16.46. 16.60 Eg 16.60 15.79

aSolution to Eq.~3! for the three component wave function on a mesh of points.
bSolution to Eq.~5! using wave functions and energies for aJ50 molecule as previously determined
numerically on a mesh of points.
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theory, as in Eq.~18!. As can be seen, the two approaches
yield quite compatible results.

2. Qualitative remarks

Some additional comments on Eq.~18! are in order. The
first line of this equation gives the energy at first order in
perturbation theory. At this order the wave function remains
a product of the spatial ground-state spatial wave function
for a J50 molecule times aJ51 rotational wave function.
At this level of approximation there is no dynamical cou-
pling between translation and rotation. In second-order per-
turbation theory we see that admixtures of two phonon states
which are multiplied by different rotational states are intro-
duced. For example, consider the situation when the mol-
ecule is in a uniaxial symmetry site and letuX&, uY&, anduZ&
be theJ51 states for which respectivelyJx , Jy , andJz are
zero. If, for simplicity, we assume that the unperturbed spa-
tial wave function is spherically symmetric, then the state
which without perturbation was

C0uZ&e2r 2/(4s2), ~19!

whereC0 is a normalization constant, is now

C1uZ&e2r 2/4s2
1C2uX&zxe2r 2/(4s2)1C2uY&zye2r 2/(4s2),

~20!

whereC1'C0 andC2 is small compared toC1. The point is
that this formulation allows the molecule to change its ori-
entational state as it translates. For H2 in C60 this effect is
small, however, in less symmetrical cavities, as in
nanotubes,16 this effect can become more important.

3. Group theoretical analysis

In Fig. 2 we show the influence of roton-phonon coupling
and local site symmetry on the energy spectrum of the one-
phonon (J51) manifold. At the far left we start from the
case of highest symmetry when the phonon and rotations
separately have complete rotational invariance and no
phonon-roton coupling is present. In this case the manifold
of nine states@three one-phonon stateŝ three (J51)
states# is completely degenerate. When roton-phonon cou-
pling is included ~but the environment is still spherically
symmetric! we have overall rotational invariance and the re-
sulting eigenstates are characterized by their total angular
momentumK. The roton-phonon coupling causes states with
different K to have different energy, as illustrated in Appen-
dix B 3. ~The size of the splitting shown in the figure is
adjusted to agree with the center of gravity of the appropriate
levels for cubic site symmetry.!

The two right-hand columns pertain to the situation when
a (J51) hydrogen molecule occupies the octahedral intersti-
tial site of C60. When the C60 molecules are orientationally
disordered the interstitial site hasOh symmetry and we con-
sider that case first. Use of the character tables for theOh
group indicates that the original nine dimensional reducible
representationG is decomposed into irreducible representa-
tion of theOh group as

G5T2g% T1g% Eg% Ag , ~21!

and the basis functions associated with these irreducible rep-
resentations are given in Table VIII. As mentioned above, for
temperatures below about 260 K, the C60 molecules order
into a structure of crystal symmetryPa3̄,9–12 in which case
the formerly octahedral interstitial has the lowerS6
symmetry.13 Use of the relevant character table shows that
now

G53Ag% 3Eg% 3Eg* , ~22!

whereEg is a complex one-dimensional representation and
Eg* is its complex conjugate partner. The basis functions as-
sociated with these irreducible representations are given in
Table VIII. The most important conclusion from this analysis
is that the energy eigenfunctions arenot simply products of
translational and rotation wave functions, but instead are lin-
ear combinations of such products. This type of wave func-
tion reflects the fact that symmetry operations act simulta-
neously on the position and the orientation of a molecule.

To emphasize this fact we give, in Fig. 3, a pictorial rep-
resentations of the translation-rotation wave functions. This
representation is to be interpreted as follows. We know that
the rotational wave functions for a freeJ51 molecule can be

FIG. 2. Removal of degeneracy as roton-phonon interactions are
introduced and the site symmetry is lowered. The degeneracy is
indicated by the number in parentheses. At the far left is shown the
completely degenerate level when spherical symmetry is assumed
and no roton-phonon coupling is present. The next panel shows the
effect of allowing roton-phonon interactions but preserving overall
spherical symmetry. HereK is the total~orbital plus orientational!
angular momentum. In the next panel spherical symmetry is low-
ered to octahedral symmetry which is appropriate for H2 in the
octahedral interstitial site in orientationally disordered C60. The far
right panel ~and the energy scale! applies to the case of H2 in
orientationally ordered C60 in which case the site symmetry isS6.
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taken to be analogs ofpx , py , andpz functions and we will
label theserotational wave functions asX, Y, or Z. For in-
stance uX&;sinu cosf, uY&;sinu sinf, and uZ&;cosu.
These wave functions have two lobes, one positive, the other
negative, aligned along the axis associated with their state
label. When such a rotational function is multiplied by a
one-phonon function in thea direction, (ux& denotes a wave
function for a single-phonon excitation in thex direction!,
the total wave function will be an odd function ofa. Thus
the wave functionuxX& is an odd function ofx and is there-
fore depicted by twopx functions, one at positivex and
another at2x, with the signs of the two lobes changed. For
simplicity in the figures we show only those functions which
have appropriate dependence in the plane of the paper, which
is taken to be thex-y plane. At the upper left we show an
xy-like function. It has two othert2g symmetry partners
which arexz-like andyz-like. At the upper right we show one
of the twoEg functions which isx22y2-like. These fivet2g
andEg functions comprise the manifold of total angular mo-
mentumK52 states. Within spherical symmetry all five of
these states are degenerate in energy. In the lower left of Fig.
3 we show thez-like function of t1g symmetry. Its other two
partners are obtained by cyclically permutingx, y, and z.
These three functions comprise the manifold of total angular
momentumK51 states, which transform under rotation as a
vector. Finally at the lower right we show the angular mo-
mentumK50 state. Thus in spherical symmetry, the nine
J51 single phonon states give rise to three distinct energy
manifolds which have degeneracies 1, 3, and 5, correspond-
ing respectively to total angular momentumK50, K51,
andK52.

The simplest classical arguments do not reproduce the
above results. For instance, one might argue that translation
can occur equivalently along either of three equivalent coor-
dinate axes. In each case, one can have the molecule oriented
along the axis of translational motion or perpendicular to that
axis. This argument would suggest that the nine levels break
into a threefold degenerate energy level in which the mol-

TABLE VIII. Basis functions within the one-phonon (J51) manifold. Herex, y, and z are the one-
phonon states with a single excitation in the phonon associated with thex, y, andz direction, respectively.a

In terms of the mJ states ~denoted umJ&) within (J51) we have X[(u21&2u1&)/A2, Y[ i (u1&
1u21&)/A2, andZ[u0&.

Oh symmetrya

T2g (xZ1zX), (yZ1zY), (xY1yX)
T1g (xZ2zX), (yZ2zY), (xY2yX)
Eg (2zZ2yY2xX), (xX2yY)
Ag (xX1yY1zZ)

Pa3̄ symmetryb

Eg andEg* (xZ1zX,yZ1zY), (xZ2zX,yZ2zY), (xX
2yY,xY1yX)

Ag zZ, xX1yY, xY2yX

aThe x, y, andz directions are taken to coincide with the fourfold axis ofOh .
bThe z direction coincides with the threefold axis ofS6.

FIG. 3. Translation-rotation wave functions for a (J51) H2

molecule in an octahedral interstitial site with one phonon. Here the
plane of the paper is thex-y plane and for simplicity only the
dependence in this plane is depicted. Each figure eight represents an
uX& or uY& orientational wave function and the sign associated with
each lobe of thisp-like function is indicated. Each orientational
wave function is multiplied by a translational wave functionux&,
uy&, or uz&, where for instanceux&;x exp@2 1

4(x/s)2#. The presence
of a phonon in ther a coordinate thus causes the wave function to
be an odd function ofr a , as one sees in the diagrams. As indicated
in Fig. 2, the total angular momentumK, which is the sum of the
angular momentum of the phonon and that of rotation, is a good
quantum number whose value is indicated. Top, left: aK52, T2g

function; top right: aK52, Eg function; bottom left: aK51, T1g

function; and bottom right aK50, Ag function.
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ecule is oriented longitudinally and a sixfold level in which
the molecule is oriented transversely. This discussion shows
that it is essential to treat the translation-rotation problem
quantum mechanically to get the correct degeneracy.

V. NEUTRON SPECTRUM

In the experimental study of Fitzgeraldet al.,5 the neutron
energy-loss spectrum of H2 trapped in C60 was measured
with an energy resolution of 0.3 meV. The spectrum shows
surprisingly rich features. However, the origin of these fea-
tures was not successfully identified in detail. Since the ob-
served neutron spectrum is a direct probe of the intermolecu-
lar potential between H2 molecules and C60 host lattice, it is
very important to see if available atom-atom potentials can
give a spectrum which is similar to the experimental data. A
suitable analysis of the high-resolution inelastic neutron-
scattering data in Ref. 5 should, in principle, give a detailed
information about the intermolecular potential between H2
molecules and the host lattice.

Figure 4 illustrates several possible transitions, involving
both rotational and vibrational excitations, that could be ob-
served in a neutron-scattering experiment for H2 in solid
C60. In order to estimate the intensities of these transitions
and the corresponding neutron spectrum, in Appendix C we
derive the inelastic neutron cross section for trapped H2 mol-
ecules in a powder sample at low temperature. Below we
discuss the contribution to the total neutron spectrum from
each of these transitions, labeled asTA , . . . ,TE , and then
compare the calculated spectrum with experimental data us-
ing various atom-atom potentials.

We start with the transitions involving phonon creation in
para hydrogen, as shown byTD in Fig. 4. Because of the
spin-dependent interaction between the proton and the neu-

tron, processes in which a para molecule is not converted to
an ortho molecule are forbidden, or more correctly speaking,
are proportional to the coherent cross sectionb, which is
very small compared to incoherent cross sectionb8. Hence
the transitionTD will not have a noticeable contribution to
the total cross section.

We next discuss the contribution to the total spectrum
from processes in which either a (J50) molecule is con-
verted to (J51) molecule~para-ortho conversion, labeled as
TA in Fig. 4! or a single phonon is created~as shown byTB).
Our calculations presented so far indicate that both processes
will give features around 14 meV in the neutron spectrum.

In Appendix C we find that the cross section due to para-
ortho conversion~indicated by the subscript 0→1) is given
by

]2s

]V]E D
0→1

5
3

4
N

k8

k
~12x!Fb8 j 1S 1

2
kr D G2

e22W(k)

3(
m

d@EL2~Ec1Em!#, ~23!

whereN is the total number of H2 molecules,k (k8) is wave
vector of the incident~scattered! neutron,k5k82k, x is the
fraction of H2 molecules which are ortho~oddJ) molecules,
r is the separation between protons in the H2 molecule,b8 is
the spin-dependent cross section in the proton-neutron
pseudopotential,j n is the nth-order spherical Bessel func-
tion, andW(k) is the Debye-Waller factor which we take to
be 1

3 k2^u2&. Also, EL is the energy loss of the neutron, and
Ec1Em is the para-ortho conversion energy when the final
state of the ortho hasJz5m.

Similarly, the cross section due to ortho-para conversion,
]2s/]V]E)1→0 has the same expression as Eq.~23! but now
the factor (12x) is replaced byx. Hence the ratio of the total
cross section for ortho to para conversion to that of para to
ortho conversion is (12x) to x, wherex is the ortho concen-
tration. Normally the ratio of energy gain to energy loss cross
sections follows the Boltzmann factor. Here, the populations
are set byx rather than by the temperature.

We now discuss the cross section due to phonon creation
on a (J51) molecule ~indicated here by the subscript 1
→1), which is calculated in Appendix C. These transitions
are shown asTB in Fig. 4. The result requires a knowledge of
the translation-rotation wave function of the H2 molecule.
We find that

]2s

]V]E D
1→1

5Nx
k8

k
b82(

n51

4

S1→1,n
(1) , ~24!

where the cross sectionS1→1,n
(1) are given in Eqs.~C34!,

~C35!, and~C43! of Appendix C.
In Fig. 5 TB represents the transitions from the (J51,N

50) levels to the manifold of nine energy levels of (J
51,N51). Accordingly, we expect several transitions with
nonzero amplitude and thus rich features in the total neutron
cross section.

Also one may consider the cross section integrated over
energy, which is a useful quantity to indicate the relative

FIG. 4. A schematic representation of possible transitions be-
tween the rotation-phonon energy levels that could be observed in a
neutron-scattering experiment. At low temperature, only the (J
50,N50) and (J51,N50) states are populated and therefore the
transitionTC can not be observed at low temperature. The transition
TD is proportional to the coherent cross section of H2 and therefore
very small. The transitionsTB andTA have comparable cross sec-
tions ~see text for details!.
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strength of the different transitions discussed above. The ra-
tio r P of the integrated neutron energy-loss cross section for
phonon creation~processTB in Fig. 4! divided by that for
para-ortho conversion~processTA in Fig. 4! was found in
Appendix C to be

r P5
2

27
k2^u2&

x@ j 0~ 1
2 kr!212 j 2~ 1

2 kr!2#

~12x! j 1~ 1
2 kr!2

. ~25!

This ratio is plotted as a function ofk for x53/4 in Fig. 6.
Since this ratio is of order unity, the energy-loss spectrum
will display features due to both phonons and para-ortho
conversion.

In Appendix C we also calculate the zero-phonon ortho
cross section for the transition shown asTE in Fig. 4. Since
the (J51) levels are in thermal equilibrium, in this case the

ratio of the cross sections at energy gain to those of energy
loss does satisfy detailed balance. The ratio of the total cross
section~counting both energy loss and energy gain! for tran-
sitions within the (J51) ground manifold to that due to para
to ortho conversion was found at zero temperature to be

r J51~T50!5
x

12x

4 j 2~ 1
2 kr!2

15j 1~ 1
2 kr!2

. ~26!

Figure 6 shows that this ratio is quite small and therefore
experimental observation of this transition~i.e., TE'0.7
meV shown in Fig. 4! would be very difficult.

Figure 7 shows the neutron energy-loss spectrum and the
calculated total spectrum using the same potential, the so-
called WS77 model,15 used by FitzGeraldet al.5 Even
though the calculated spectrum is wider than the experimen-
tal spectrum, it is still possible to make a one to one corre-
spondence between calculation and experiment as is shown
by arrows in Fig. 7. The top curve in this figure shows what
the spectrum looks like if the orientational part of the poten-
tial is scaled by about half. The agreement between the data
and calculations is somewhat better after this arbitrary scal-
ing, indicating that the potential used is too anisotropic for
the center-of-mass motion of H2 molecule but at the same
time it is too weak for the orientational part of H2 @because it
gives too small a result ford, the splitting of the (J51)
ground manifold#.

We also tested other potentials commonly used in the lit-
erature and these results are shown in Fig. 8. The top curve is
from Novaco’s 6-12 potential which was developed to study
hydrogen on graphite.4 Clearly this potential gives too low
phonon energies and too little splitting of the (J51) levels
for H2 in solid C60. The other two curves in Fig. 8 are 6-exp
potentials tabulated in Ref. 15. The spectrum from these po-
tentials does not agree with experiment either. We also
searched the potential parametersA andB for 6-12 andA, B,

FIG. 5. The calculated transition probabilities from the (J
51,N50) levels to the ninefold manifold of (J51,N51) levels at
T54 K. The energies of the levels are given in Table VII~under
full mesh!. For each pair of energies these transition probabilities
represent the appropriate sum over degenerate levels. Note that
there are at least eight transitions with comparable probability, sug-
gesting that rich features could be observed in a neutron-scattering
experiment.

FIG. 6. The solid curve is the ratior P of the single-phonon cross
section to that from para-ortho conversion as given in Eq.~25! as a
function of momentum transfer. The dotted line shows 503r J51

(T50) as given in Eq.~26!. The experimental situation of Ref. 5
corresponds to a momentum transfer between 2 and 4 Å21.

FIG. 7. Neutron energy-loss spectrum~middle! at 4.2 K. The
bottom curve is the result from our calculation using the WS77
potential. The dashed and gray lines are the contributions from ro-
tational and vibrational excitations, respectively. The top curve is
the spectrum after arbitrarily scalingAl

m by half, indicating that the
orientational potential used in our calculations is too anisotropic as
far as the center-of-mass motion is concerned.
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and C for 6-exp types of potentials. However, we were not
able to improve the fit to experiment using these atom-atom
potentials. Hence it seems that simple atom-atom potential
does not describe the details of the H2-C60 interaction well. It
is an open and important question to find a better potential
can reproduce the experimental spectrum better. It is also of
important to see how well the potentials obtained from
density-functional theory within local-density approximation
will do.

Finally, in addition to features observed near 14 meV,
Fitzgeraldet al.5 also observed a feature at about 28 meV in
the energy gain time-of-flight spectrum. This energy is about
twice that of either the para-ortho conversion energy or the
energy of the translational phonon for an H2 molecule in an
octahedral interstitial site. Clearly this feature represents the
energy of two excitations, but it was not clear whether these
would be two phonons, one phonon, and one ortho-para tran-
sition, or two ortho-para transitions. In Fig. 9 we show the
temperature dependence of the total intensity of this feature.
This temperature dependence follows a thermal activation
with an energy of about 14 meV. Thus the initial state must
consist of one thermally excited phonon and the transition
observed destroys one thermal phonon and converts one
ortho molecule~which occurs with temperature-independent
probability x) to a para molecule, thus giving the observed
energy of about 28 meV.

VI. CONCLUSIONS

Our results indicate that the coupled phonon-roton prob-
lem is a rich one. For the light molecules of H2 where the
splitting of rotational levels is large compared to most lattice
vibrational modes, one is in a so-called weak-coupling limit
where the interactions between rotons and translational
phonons can be treated perturbatively. Even at this level one
recovers an interesting structure. Needless to say, we hope

that the calculations in this paper will motivate more detailed
experiments at higher resolution to elucidate the structure of
the roton-phonon spectrum.

We may summarize our main conclusions as follows:
• We have presented a systematic perturbative approach to

the calculation of the roton-phonon spectrum of hydrogen
molecules in confined geometry. Our calculations agree with
the group theoretical analysis for the geometries considered
here.

• In a general way, the techniques of this paper~use of the
atom-atom potential combined with perturbation theory! may
prove useful to treat hydrogen molecules in other confined
geometries, in particular in or on nanotubes. We are currently
analyzing this situation.

• We give a calculation of the expected energy-loss spec-
trum from hydrogen in C60 in the energy range where
phonons and para-ortho conversion both are important. We
find that none of the traditional 6-12 and 6-exp types of
potentials give good results for the detailed energy depen-
dence of the observed phonon spectrum, although the WS77
potential15 we used was definitely the most satisfactory. It is
a theoretical challenge to determine a potential which fully
reproduces the observed spectrum.

• We identify the feature at 28 meV in the energy gain
spectrum as consisting of conversion of one ortho molecule
to a para molecule combined with annihilation of a single
phonon. This identification is uniquely indicated by the tem-
perature dependence of this feature.
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APPENDIX A: ATOM-ATOM POTENTIAL AND AL
M

We model the interactions between the hydrogen mol-
ecule and the surrounding cage of C60 molecules using an

FIG. 8. Neutron energy-loss spectrums obtained from various
commonly used intermolecular potentials. For each potential we
give the value ofd, the splitting of the (J51) zero-phonon levels,
which may be compared to the experimentally determined valued
50.75 meV~Ref. 5!. Note that the average phonon energies of the
first two potentials~top and middle curves! are way off from the
observed value of'14 meV.

FIG. 9. Temperature-dependent neutron energy gain spectrum of
H2 in C60 ~the data is taken from Ref. 5!. The inset shows ln(I/I0)
versus 1/kT, whereI is the intensity of the feature at about 28 meV.
The slope of the line indicates an activation energy barrier of 14.8
meV.
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atom-atom potential.15 Unless otherwise indicated, all the re-
sults reported in this paper are obtained from the same po-
tential 2A/r 61B exp(2Cr) that is used in Ref. 5~whereA
55.94 eV Å6, B5678.2 eV, andC53.67 Å21).

We consider two cases depending on the orientational
state of C60 molecules. When the molecules in the surround-
ing cage are orientationally disordered, we distribute the car-
bon centers uniformly over the surface of a sphere. This case
corresponds to the octahedral symmetry discussed in the text.
The resulting integration of the atom-atom potential over a
spherical surface is done analytically in Ref. 5 and therefore
is not given here. For thePa3̄ symmetry, the C60 molecules
are oriented according to theirPa3̄ settings and then the
total potential andAl

m’s are calculated on a mesh points of a
cube centered at the octahedral site. Below we derive a con-
venient way to obtain theAl

m’s from the atom-atom potential.
We write the potentialVH-C between a single H atom and

a single C atom as

VH-C5F~r !, ~A1!

wherer is the displacement of the C atom relative to the H
atom. Thus the interactionV(H2) of a H2 molecule with a C
atom can be written as

V~H2!5 (
s561

F@~r 21 1
4 r21srr•n̂!1/2#, ~A2!

where nowr is the displacement of the C atom relative to the
center of the H2 molecule whose atoms are at positions
6 1

2 rn̂, wheren̂ is a unit vector specifying the orientation of
the molecular axis of the H2 molecule. Then

A2l
m5(

s
(

i
E Y2l

m~ n̂!* F@~r i
21 1

4 r21srr i•n̂!1/2#dV,

~A3!

wheredV indicates an integration over all orientations ofn̂
and the sum overi is over all neighboring carbon atoms. We
use this to get

A0
0[V052Ap(

i
E

21

1

F@~r i
21 1

4 r21rr ix!1/2#dx.

~A4!

To get theAl
m’s for l .0 we write

(
s

F@~r i
21 1

4 r21srr i•n̂!1/2#5(
L

B2L~r i !Y2L
0 ~u r ,n!,

~A5!

where u r ,n is the angle between the vectorsr i and n̂. We
have that

B2L~r i !52p(
s

E
0

p

F@~r i
21 1

4 r21srr icosu!1/2#

3Y2L
0 ~u!sinudu. ~A6!

Now substitute Eq.~A5! into Eq. ~A3! to get

A2l
m5(

i
E Y2l

m~ n̂!* (
L

B2L~r i !Y2L
0 ~u r ,n!dV. ~A7!

Using the addition theorem for spherical harmonics20 we
have

A2l
m5(

i
E Y2l

m~ n̂!* (
L

B2L~r i !A4p/~2L11!

3(
n

Y2L
n ~ n̂!Y2L

n ~ r̂ i !* dV

5(
i

B2l~r i !A4p/~2l 11!Y2l
m~ r̂ i !* . ~A8!

For A2
m we get

A2
m52p(

i
Y2

m~ r̂ i !* E
21

1

~3x221!

3F~@r i
21 1

4 r21r irx#1/2!dx. ~A9!

For power-law functionsF ~i.e., F;1/r 2n), this integral can
be done analytically.

APPENDIX B: SPHERICAL CAVITY

In this appendix we apply our formalism discussed in the
text to a simple toy model to utilize the main physics of
quantum roton-phonon dynamics of a H2 molecule confined
in a spherically symmetric cavity for which the potential
differs perturbatively from harmonic.

1. Orientationally dependent potential

For a diatomic molecule for which the spherical part of
the potential is that of an isotropic spherical oscillator, we
take the orientationally dependent part of the potential to be

U~r ,V!

5 f ~r !@~ x̂ sinu cosf1 ŷ sinu sinf1 ẑ cosu!22 1
3 #,

~B1!

wherex̂[x/r , ŷ[y/r , and ẑ5z/r .
This potential can be written in the canonical form of Eq.

~2! with

A2
m5

8p

15
f ~r !Y2

m~ r̂ !* . ~B2!

2. Energy shift of the JÄ1 manifold

To evaluate Eq.~16! for the shift in the center of gravity
of the J51 zero phonon levels, we need the wave function
of the ground state, namely

c0~r !5ae2r 2/(4s2). ~B3!

wherea5s23/2(2p)23/4. Also we can write the two-phonon
excited states~for spherical symmetry! as
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c2,m
(L52)5b~r /s!2Y2

m~ r̂ !e2r 2/(4s2), ~B4!

for m522,21,0,1,2, and for angular momentumL52 and
whereb5s23/2A2/15(2p)21/4. The sixth two-phonon state
is ans-wave state, whose wave function we do not need. We
will also need theL52 (d-wave! four-phonon states which
are

c4,m
(L52)5g@~r /s!427~r /s!2#Y2

m~ r̂ !e2r 2/(4s2), ~B5!

for m522,21,0,1,2, and whereg5s23/2A1/105(2p)21/4.
Now we assume the following polynomial fit forf (r ):

f ~r !5g2~r /s!21g4~r /s!41g6~r /s!6. ~B6!

We then find

u^0uA2
m~r !uc2,m

(L52)&u54Ap

15
ug217g4163g6u[4Ap

15
G

~B7!

and

u^0uA2
m~r !uc4,m

(L52)&u54A14p

15
ug4118g6u. ~B8!

Thus we have

DE52
4

15

~g217g4163g6!2

\v
2

28

15

~g4118g6!2

\v
.

~B9!

From numerics we get

A2
0~z!50.07226r 410.0348r 6. ~B10!

For convenience we takes50.25 Å. ThenA2
0 is of the form

of Eqs.~B2! and ~B6! with

g450.07226s4, g650.0348s6, ~B11!

g450.07226/25650.282 meV, ~B12!

g650.0348/409650.0084 meV. ~B13!

We evaluate the first and second terms on the right-hand side
of Eq. ~B9! to be 0.115 and 0.025 meV, respectively. Thus
we have

DE50.14 meV. ~B14!

Notice thatDE is a very strong function ofs. For instance,
if you take s50.26 Å, you get g450.33 meV andg6
50.011 meV in which caseDE50.19 meV.

3. Effect of translation-rotation coupling on the JÄ1 one-
phonon manifold

In the absence of coupling between translations and rota-
tions we characterize the single-phonon states by phonon
angular momentumLP , so that

uLP561&57S x6 iy

s Dc0~r !, uLP50&5~z/s!c0~r !.

~B15!

We now wish to include the effect of the perturbation of the
form of Eq.~2! when the coefficients are as in Eq.~B2!, with
f (r ) given by Eq.~B6!. We know that states are now char-
acterized by the total angular momentumK5LP1J. So the
energy of theK52 manifold is given by

E~K52!5^LP51,Jz51uU~r ,V!uLP51,Jz51&

52
1

15

E dr u
x2 iy

s
u2e2r 2/(2s2) f ~r !

3z22r 2

r 2

E dr u
x2 iy

s
u2e2r 2/(2s2)

3^Jz51u~3Jz
222!uJz51&

5

2E dr r 2f ~r !e2r 2/(2s2)

225s2E dre2r 2/(2s2)

5
2

15
G, ~B16!

wheref (r ) andG are defined in Eqs.~B6! and~B7!, respec-
tively.

Similarly, one can evaluate the Hamiltonian in the mani-
fold of statesf15uLP51,Jz50& and f25uLP50,Jz51&.
The Hamiltonian matrix in this basis is found to be

H5GF 2
4

15

2

5

2

5
2

4

15
G . ~B17!

This matrix has an eigenvalue215 G which is associated with
the K52, Kz51 state and the new eigenvalue for theK
51 manifold,E(K51)52 2

3 G.
Similarly, one can evaluate the Hamiltonian in the mani-

fold of states f15uLP51,Jz521&, f25uLP50,Jz50&,
and f35uLP521,Jz51&. The Hamiltonian matrix in this
basis is found to be

H5G3
2

15
2

2

5

4

5

2
2

5

8

15
2

2

5

4

5
2

2

5

2

15
4 . ~B18!

In this manifold we reproduce the eigenvalues forK52 and
K51. The new eigenvalue isE(K50)5 4

3 G.
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APPENDIX C: NEUTRON-SCATTERING CROSS SECTION

1. General formulation

Following Elliott and Hartmann,21 we write

V~r2rn!5
2p\

m0
d~r2rn!@b1b8~s•I !#, ~C1!

wherem0 is the neutron mass,s is the neutron spin,r is the
coordinate of the proton,rn the coordinate of the neutron,I is
the proton spin, andb andb8 are the coherent and incoherent
scattering lengths for this scattering. Sinceb is very small,
we drop that term from now on. The differential scattering
cross section is

]2s

]V]E
5

k8

k (
i f

Pid~E2Ei1Ef !uVu2, ~C2!

whereE5\2@(k8)22k2#/(2m0), Pi is the Boltzmann prob-
ability, and the sum is over all states of the system. Here the
potential is

V5b8(
j a

ei k•Rj ,as•I j ,a , ~C3!

wherek5k82k, j labels molecules anda51,2 the atoms
within a molecule. Performing the sum overa we get

V5b8(
j

ei k•Rj$~s•I j !cos~ 1
2 k•r!

1 i sin~ 1
2 k•r!@s•~ I j 12I j 2!#%, ~C4!

where I j5I j 11I j 2. The first term acts only on ortho mol-
ecules because for paras the total spin is zero and the second
term causes transitions between ortho and para molecules. So
we write the scattering cross section as the sum of three
terms, the first of which represents scattering from an ortho
molecule and others ortho-para conversion or the reverse.
Thus

]2s

]V]E
5

k8

k
@NxS1→11NxS1→01N~12x!S0→1#,

~C5!

whereN is the total number of molecules andx is the ortho
concentration. Because there are no correlations between
nuclear spins each cross section is actually a sum over cross
sections for each molecule:

Sb5(
j

Sb j , ~C6!

wherej labels the molecule,b is 0→1, etc., and

S0→1,j5 (
Ji50,Jf51

Pid~E2Ei1Ef !u^ f ub8ei k•Rjsin~ 1
2 k•r!

3@s•~ I j 12I j 2!#u i &T
2,

S1→0,j5 (
Ji51,Jf50

Pid~E2Ei1Ef !u^ f ub8ei k•RjsinS 1

2
k•rD

3@s•~ I j 12I j 2!#u i &T
2,

S1→1,j5 (
Ji51,Jf51

Pid~E2Ei1Ef !u^ f ub8ei k•RjcosS 1

2
k•rD

3@s•I #u i &T
2, ~C7!

where the sums are over states for the fixed species~ortho or
para! of molecule as indicated and the subscriptT indicates
that the wave functions include nuclear-spin functions.

Now we perform the sum over the spin states of the neu-
tron and proton to obtain the results

S0→1,j5
3
4 ~b8!2 (

Ji50,Jf51
Pid~E2Ei1Ef !

3u^ f uei k•Rjsin~ 1
2 k•r!u i &2,

S1→0,j5
1
4 ~b8!2 (

Ji51,Jf50
Pid~E2Ei1Ef !

3u^ f uei k•Rjsin~ 1
2 k•r!u i &2,

S1→1,j5
1
2 ~b8!2 (

Ji51,Jf51
Pid~E2Ei1Ef !

3u^ f uei k•Rjcos~ 1
2 k•r!u i &2, ~C8!

where now statesu f & andu i & no longer include nuclear spin-
wave functions. We write

ei k•Rj5ei k•(Rj
(0)

1uj )'ei k•Rj
(0)

e2(1/2)(k•uj )
2
@11 i ~k•uj !#

'e2Wei k•Rj
(0)

@11 i ~k•uj !#, ~C9!

whereRj
(0) is the equilibrium value ofRj andW' 1

6 k2^u2&
[ 1

6 k2^ux
21uy

21uz
2&. Since spherical harmonics of degree

higher than two do not affect the manifolds ofJ50 or J
51, we now use

cos~ 1
2 k•r!5 j 0~ 1

2 kr!24p j 2~ 1
2 kr!(

n
Y2

n~ k̂!* Y2
n~ r̂!

~C10!

and

sin~ 1
2 k•r!54p j 1~ 1

2 kr!(
n

Y1
n~ k̂!* Y1

n~ r̂!. ~C11!

We expand in displacements to get
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S0→1,j5~4p!2A (
Ji50,Jf51

Pid~E2Ei1Ef !^ f u@11 i k•uj #

3(
n

Y1
n~ k̂!* Y1

n~ r̂!u i &^ i u@12 i k•uj #

3(
m

Y1
m~ k̂!Y1

m~ r̂!* u f &, ~C12!

S1→0,j5~4p!2B (
Ji51,Jf50

Pid~E2Ei1Ef !^ f u@11 i k•uj #

3(
n

Y1
n~ k̂!* Y1

n~ r̂!u i &^ i u@12 i k•uj #

3(
m

Y1
m~ k̂!Y1

m~ r̂!* u f &, ~C13!

where A5 3
4 e22W@b8 j 1( 1

2 kr)#2, B5 1
4 e22W@b8 j 1( 1

2 kr)#2,
and

S1→1,j5
1
2 ~b8!2 (

Ji51,Jf51
Pid~E2Ei1Ef !^ f u@11 i k•uj #

3F j 0~ 1
2 kr!24p j 2~ 1

2 kr!(
n

Y2
n~ k̂!* Y2

n~ r̂!G u i &
3^ i u@12 i k•uj #F j 0~ 1

2 kr!

24p j 2~ 1
2 kr!(

m
Y2

m~ k̂!Y2
m~ r̂!* G u f &. ~C14!

Since the phonon energy is much larger than the orienta-
tional energy, we may classify contributions according the
number of phonons that are involved. In the notation of Eq.
~C6! we write

Sb5S b
(0)1S b

(1) , ~C15!

whereS b
(0) corresponds to a zero-phonon process andS b

(1) to
a process in which one phonon is created or destroyed. Thus

S 0→1
(0) 5~4p!2A (

Ji50,Jf51
Pid~E2Ei1Ef !(

mn
^ f uY1

n~ r̂!u i &

3^ i uY1
m~ r̂!* u f &Y1

n~ k̂!* Y1
m~ k̂!, ~C16!

S 0→1
(1) 5~4p!2A (

Ji50,Jf51
Pid~E2Ei1Ef !

3 (
mnab

^ f uua* Y1
n~ r̂!u i &^ i uub* Y1

m~ r̂!* u f &

3kakbY1
n~ k̂!* Y1

m~ k̂!. ~C17!

Here and below we use spherical components of a vectorv:
v6157(vx6 ivy)/A2 andv05vz . Similarly

S 1→0
(0) 5~4p!2B (

Ji51,Jf50
Pid~E2Ei1Ef !(

mn
^ f uY1

n~ r̂!u i &

3^ i uY1
m~ r̂!* u f &Y1

n~ k̂!* Y1
m~ k̂!, ~C18!

S 1→0
(1) 5~4p!2B (

Ji51,Jf50
Pid~E2Ei1Ef !

3(
mn

^ f uua* Y1
n~ r̂!u i &^ i uub* Y1

m~ r̂!* u f &

3kakbY1
n~ k̂!* Y1

m~ k̂!, ~C19!

S1→1
(0) 5~4p!2C (

Ji51,Jf51
Pid~E2Ei1Ef !(

m,n
^ f uY2

m~ r̂!u i &

3^ i uY2
n~ r̂!u f &Y2

m~ k̂!* Y2
n~ k̂!* , ~C20!

whereC5 1
2 e22W@b8 j 2( 1

2 kr)#2 and

S 1→1
(1) 5D0 (

Ji51,Jf51
Pid~E2Ei1Ef !(

ab
^ f uua* u i &

3^ i uubu f &ka* kb14pD1 (
Ji51,Jf51

Pid~E2Ei1Ef !

3 (
mab

^ f uua* Y2
m~ r̂!u i &^ i uub* u f &kakbY2

m~ k̂!*

14pD1 (
Ji51,Jf51

Pid~E2Ei1Ef ! (
mab

^ f uua* u i &

3^ i uub* Y2
m~ r̂!u f &kakbY2

m~ k̂!*

1~4p!2D2 (
Ji51,Jf51

Pid~E2Ei1Ef !

3 (
mnab

^ f uua* Y2
n~ r̂!* u i &

3^ i uub* Y2
m~ r̂!u f &kakbY2

m~ k̂!* Y2
n~ k̂!

5 (
n51

4

S1→1;n
(1) , ~C21!

where Dn5 1
2 (21)n(b8)2e22Wj 0( 1

2 kr)22nj 2( 1
2 kr)n and

S1→1;n
(1) is the contribution to the one-phonon ortho cross sec-

tion from thenth term in the first equality.
Note the existence of terms in which a phonon and a roton

are created, the system evolves, and finally a phonon is de-
stroyed. This type of process can only occur when the system
supports roton-phonon interactions. All the termsS1→1;n

(1) cor-
respond approximately to the phonon energy.

2. Powder average at low temperature

Here we restrict attention to the energy-loss spectrum at
low temperature when there are no thermal phonons present.
Also, we now take the powder average. This corresponds to
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actual experimental situation in Ref. 5, but would also be a
reasonable approximation to take account of the differently
oriented symmetry axes of the various octahedral interstitial
sites. Below we calculate the cross sections for the following
processes;~a! energy loss by conversion,~b! energy gain by
conversion,~c! single-phonon energy loss, and finally~d!
zero-phonon transition from (J51,M50) to (J51,M
561).

a. Energy loss by conversion

We have

^S 0→1
(0) &5~4p!A (

Ji50,Jf51
Pid~E2Ei1Ef !

3(
m

^ f uY1
m~ r̂!u i &^ i uY1

m~ r̂!* u f &, ~C22!

where^ & indicates a powder average. The initial state is the
J50,Jz50 zero-phonon state, which we write as

c i5(
r

ci~r !ur ;J50;Jz50&, ~C23!

where ci(r ) is the amplitude of the wave function at the
mesh pointr . The final state is aJ51 zero-phonon state,
which we similarly write as

c f ,m5(
r ,M

cf ,m~r ,M !ur ;J51;Jz5M & ~C24!

and whose energy relative to theJ50 state is

Ef ,m5Ec1Em . ~C25!

If EL52E is the energy loss, we may write

^S 0→1
(0) ~EL!&5A(

m
d@EL2~Ec1Em!#

3(
m

U(
r

cf ,m~r ,m!* ci~r !U2

. ~C26!

To a good approximation the zero-phonon wave functions for
J51 can be chosen to be composed of a single value ofJz .
Thus we may label the wave functions so thatm5m:

^S 0→1
(0) ~EL!&5A(

m
d@EL2~Ec1Em!#

3U(
r

cf ,m~r ,m!* ci~r !U2

. ~C27!

The corresponding integrated intensity is

I (0)[E dEL^S 0→1
(0) &5A(

m
U(

r
cf ,m~r ,m!* ci~r !U2

.

~C28!

The inner product of theJ50 wave function and the spatial
part of theJ51 zero-phonon states is essentially unity. So

I (0)53A. ~C29!

b. Energy gain by conversion

Here we give a similar analysis of the energy-gain spec-
trum at low temperature due to ortho-para conversion. The
derivation is similar to that for para-ortho conversion so we
only quote the results:

^S 1→0
(0) ~EL!&5B(

m
Pmd@E2~Ec2Em!#

3U(
r

ci ,m~r ,m!* cf~r !U2

, ~C30!

wherePm is the probability that theJ51,Jz5m state is oc-
cupied and the role of initial and final states is interchanged
from the para to ortho processes. The corresponding inte-
grated intensity is

I (0)[E dE^S 1→0
(0) &5B(

m
PmU(

r
ci ,m~r ,m!* cf~r !U2

5B.

~C31!

SinceB53A we see that ratio of the total cross section for
ortho to para conversion to that of para to ortho conversion is
(12x) to x, wherex is the ortho concentration. Normally the
ratio of energy gain to energy-loss cross sections follows the
Boltzmann factor. Here, the populations are set byx rather
than by the temperature.

c. Single-phonon energy loss

We have the powder average ofS1→1;1
(1) of Eq. ~C21! as

^S1→1;1
(1) &5

1

3
k2D0 (

Ji51,Jf51
Pid~E2Ei1Ef !(

L
u^ f uuLu i &u2

~C32!

and the corresponding integrated intensity is

I 1
(1)[E dEL^S1→1;1

(1) ~EL!&5
1

3
k2^u2&D0 . ~C33!

In terms of the amplitudes of the wave function on the mesh
points, the above result is

^S1→1;1
(1) &5

1

3
k2D0(

i , f
Pid~EL2Ef1Ei !

3(
L

U(
M ,r

ci~M ,r !cf~M ,r !r LU2

. ~C34!

Also we obtain the powder average ofS1→1;2
(1) andS1→1;3

(1)

of Eq. ~C21! as
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^S1→1;2
(1) ~EL!&5^S1→1;3

(1) ~EL!&*

52
2

5
A8p

15
D1k2(

i , f
Pid~EL2Ef1Ei !

3 (
M ,M8

C~112;M ,M 8!~21!M1M8

3^ f uu2MT2
M1M8~J!u i &^ i uu2M8u f &,

~C35!

where theT2
M(J) are the operator equivalents of the spherical

harmonics:22

T2
62~J!5A 15

32p
J6

2 ,

T2
61~J!57A 15

32p
~JzJ61J6Jz!,

T2
0~J!5A 5

16p
~3Jz

222!. ~C36!

Here

^ i uu2M8u f &5(
m,r

ci~m,r !* cf~m,r !r 2M8 . ~C37!

and

^ f uu2MT2
M1M8~J!u i &5

5

A8p
(
m,r

ci~m,r !cf~m1M

1M 8,r !* r 2MC~121;m,M1M 8!,

~C38!

where we used

^J51;Jz5M uT2
L~r!uJ51;Jz5M 8&

5
5

A8p
dM ,L1M8C~121;M 8,L !. ~C39!

We have the contributions to the integrated intensity

I 2
(1)5I 3

(1)* 5E dEL^S1→1;2
(1) ~EL!&

52
2

5
A8p

15
D1k2(

i f
Pi (

M ,M8
C~112;M ,M 8!

3~21!M1M8^ i uu2M8u f &^ f uu2MT2
M1M8~J!u i &.

~C40!

Here the sum over final states should be restricted to
single-phonon states. Higher energy states make only a small
contribution to this sum. So we make the closure approxima-
tion that the sum overu f & extends over all states, in which
case

I 2
(1)52

2

5
A8p

15
D1k2(

i
Pi (

M ,M8
C~112;M ,M 8!

3~21!M^ i uuM8
* u2MT2

M1M8~J!u i &. ~C41!

As illustrated by Eq.~20!, the initial stateu i & is dominantly
comprised of a single value ofJz . Thus in Eq.~C41! M
1M 850 dominates. In addition, the system is nearly isotro-
pic. Then (MC(112;M ,2M )(21)Muu2Mu250. So, to a
good approximation,

I 2
(1)1I 3

(1)50. ~C42!

We have made several approximations, but our result for the
total integrated intensity will not be much affected by these
approximations.

Similarly, we get

^S1→1;4
(1) ~EL!&5

16p

75
k2D2 (

i , f ,m,M
Pid~EL2Ef

1Ei !u^ f uuMT2
m~J!u i &u2

2
32p

25A21
D2k2 (

i , f ,n,M ,M8
Pid~EL2Ef

1Ei !C~112;M ,M 8!C~222;M1M 8,n!

~21!M8^ f uu2MT2
2n~J!u i &

3^ f uuM8T2
2M2M82n~J!u i &* . ~C43!

We now evaluate the integrated intensity,

I 4
(1)[E dEL^S1→1;4

(1) ~EL!&[t11t2 , ~C44!

where

t15
16p

75
k2D2 (

i , f ,m,M
Pi^ i uu2MT2

2m~J!u f &

3^ f uuMT2
m~J!u i &~21!M1m. ~C45!

Making the closure approximation this is

t15
16p

75
k2D2 (

i ,m,M
Pi^ i uu2MuMT2

2m~J!T2
m~J!u i &~21!m1M

5
2

3
k2D2(

i
Pi^ i uu2MuMu i &~21!M5

2

3
k2D2^u

2&.

~C46!

Similarly

t252
32p

25A21
D2k2 (

i ,M ,M8n

PiC~112;M ,M 8!C~222;M

1M 8,n!~21!M1n^ i uuM* T2
M1M81n~J!u2MT2

2n~J!u i &.

~C47!
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Again, we treatu i & as having a single value ofJz , so that
M1M 850. Also we again assume spatial isotropy, so that
(MC(112;M ,2M )(21)Muu2Mu250. Thent250.

d. Zero-phonon ortho cross section

Finally we consider the zero-phonon contribution to the
ortho to ortho cross section. Taking the powder average, we
have

^S1→1
(0) &54pC (

Ji51
(

Jf51
Pid~E2Ei1Ef !

3(
m

^ f uY2
m~ r̂!u i &^ i uY2

2m~ r̂!u f &~21!m.

~C48!

If d is the energy of theJz561 levels relative to theJz
50 level and if the Boltzmann probability of the stateum& is
Pm , then we may write

^S1→1
(0) &54pCP0d~E1d! (

m561
@ u^muY2

1~ r̂!u0&u2

1u^muY2
21~ r̂!u0&u2#14pCd~E2d!

3 (
m561

Pm@ u^muY2
1~ r̂!u0&u21u^muY2

21~ r̂!u0&u2#,

~C49!

which gives

^S1→1
(0) &5 6

5 CP0d~E1d!1 6
5 CP1d~E2d!. ~C50!

The ratio of cross sections at energy gain to those of energy
loss does satisfy detailed balance because within the species
(J51) we do maintain thermal equilibrium.

3. Intensity ratios

We develop an expression for the ratior P , defined to be
the integrated intensity due to phonon creation divided by
that due to para-ortho conversion. Using the results forI (n)

obtained above we have

r P5
xEdEL^S1→1

(1) ~EL!&

~12x! EdEL^S0→1
(0) ~EL!&

5
x@ I 1

(1)1I 4
(1)#

~12x!I (0)

5

1
3 k2^u2&D01 2

3 k2^u2&D2

3A S x

12xD
5

2

27
k2^u2&

j 0~ 1
2 kr!212 j 2~ 1

2 kr!2

j 1~ 1
2 kr!2 S x

12xD .

~C51!

The ratior C, defined to be the ortho to para conversion cross
section in energy gain to that in energy loss due to para to
ortho conversion, is given by

r C5
x

12x
. ~C52!

Finally, we haver J51, defined to be the total cross section
~counting both energy loss and energy gain! for transitions
within theJ51 ground manifold divided by that due to para
to ortho conversion, as

r J515S x

12xD 6
5 C~P01P1!

3A
5~P01P1!r J51~T50!,

~C53!

where

r J51~T50!5S x

12xD 4 j 2~ 1
2 kr!2

15j 1~ 1
2 kr!2

. ~C54!
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