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Rotational and Vibrational Dynamics of Interstitial Molecular Hydrogen

Abstract

The calculation of the hindered roton-phonon energy levels of a hydrogen molecule in a confining potential
with different symmetries is systematized for the case when the rotational angular momentum J is a good
quantum number. One goal of this program is to interpret the energy-resolved neutron time-of-flight
spectrum previously obtained for HyCgp. This spectrum gives direct information on the energy-level
spectrum of Hj molecules confined to the octahedral interstitial sites of solid Cgo. We treat this problem of
coupled translational and orientational degrees of freedom (i) by construction of an effective Hamiltonian to
describe the splitting of the manifold of states characterized by a given value of ] and having a fixed total
number of phonon excitations, (ii) by numerical solutions of the coupled translation-rotation problem on a
discrete mesh of points in position space, and (iii) by a group theoretical symmetry analysis. Results obtained
from these three different approaches are mutually consistent. The results of our calculations explain several
aspects of the experimental observations, but show that a truly satisfactory orientational potential for the
interaction of an Hy molecule with a surrounding array of C atoms has not yet been developed.
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Rotational and vibrational dynamics of interstitial molecular hydrogen
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The calculation of the hindered roton-phonon energy levels of a hydrogen molecule in a confining potential
with different symmetries is systematized for the case when the rotational angular momeiguengood
guantum number. One goal of this program is to interpret the energy-resolved neutron time-of-flight spectrum
previously obtained for kCgy. This spectrum gives direct information on the energy-level spectrum,of H
molecules confined to the octahedral interstitial sites of soljgl @ve treat this problem of coupled transla-
tional and orientational degrees of freeddim by construction of an effective Hamiltonian to describe the
splitting of the manifold of states characterized by a given valud ahd having a fixed total number of
phonon excitationgjii) by numerical solutions of the coupled translation-rotation problem on a discrete mesh
of points in position space, andi) by a group theoretical symmetry analysis. Results obtained from these
three different approaches are mutually consistent. The results of our calculations explain several aspects of the
experimental observations, but show that a truly satisfactory orientational potential for the interaction,of an H
molecule with a surrounding array of C atoms has not yet been developed.

DOI: 10.1103/PhysRevB.66.214301 PACS nunider78.70.Nx, 34.50.Ez, 82.80.Gk, 71.20.Tx

I. INTRODUCTION This is certainly true for solids consisting of these molecules
unless the pressure is quite larg€or a review of the prop-
The study of rotational and vibrational dynamics of guesterties of the hydrogen molecule and solid hydrogen see Ref.
molecules(i.e., CO, Q, H,, etc) trapped in porous media 6.)
such as fullerenes, zeolites, and graphite has recently become We have been led to consider this phenomenon in view of
an active SUbJECt both experimentally and theoretiéﬁﬁy. an experimenta] Study of energy spectra Qf &hd D, in-
This is because such studies can yield valuable informatiogerted into the octahedral interstitial sites in solig €arried
about the host-guest interactions which could be importangt by neutron time-of-flight techniquésn considering this
for several techn|0613I apphcatlpns such as gas separation a’b‘ii\enomenon we should keep in mind the following experi-
hydrogen storagE™® In  particular, hydrogen molecules 10t facts concerning the host solid qf,CThe centers of
trapped in interstitial cavities in solidggas well as hydro- the Gy, molecules form an fcc lattickAt temperature above

gen molecules embedded in nanotube ropes are of intereft whereT, is about 260 K, the molecules are orientation-
due to quantum behavior of hydrogen molecules in quasi- ¢’ ¢ ’

zero and one-dimensional site&5 ally disordered. AtT=T, long-range orientational ordering

In this paper, we develop a detailed analysis of Coupleooccur§ and the molecules are ordered into four sublattices as

rotational and vibrational dynamics of a molecular hydrogerdescribed byPa3 symmetry?~*2In the orientationally disor-
encapsulated in a solid using numerical, perturbative, andered phase the local symmetry at the octahedral interstitial
group theoretical methods. In particular we will be interestedsite is indeed that of the point growp, . In the presence of
in what one might call the “weak-coupling limit,” when the orientational ordering the symmetry of what was the “octa-
interaction between molecular rotations and center-of-maskedral” interstitial site is now reduced to a uniaxial symme-
translations is weak enough that the rotational angular motry, specifically that of point grous.® In experiments, hy-
mentum quantum numbdris a good quantum number. This drogen molecules are stable in the octahedral interstitial site
limit is almost never satisfied except for very light moleculesonly for temperatures well belowW, (where the interstitial
like hydrogen or deuterium. The energy levels of a free rosjte does not actually have octahedral symmetry
tator are While a general understanding of the time-of-flight ex-
periments was presentddsome of the finer details of the
E;=BJ(J+1), (1) experiment remained unexplained. For instance, the shift in
the energy associated with ortho-pada=(1—J=0) conver-
whereB=#2/(2l), | is the moment of inertia of the mol- sion in the interstitial relative to its value for free molecules
ecule, andg; is (2J+1)-fold degenerate. For Hhe rota- was not understood. Also the feature in the energy gain spec-
tional constant B has the value 60 cit, 14.7 meV, or trum at about twice the ortho-para conversion energy was not
B/k=85 K (and the corresponding values fop Bre half as unambiguously identified. These issues are both addressed in
large), so that the energy separation between diffeddetv-  this paper. More generally we give a calculation of the cross
els is large enough that oftehis a good quantum number. section for neutron energy loss for comparison with the ob-
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served time-of-flight spectrum. For that purpose we need not '

only to consider the cross section for para-ortho conversion V(r,Q)=Vy(r)+ E E AM(NYM(Q). (2

as compared to phonon creation, but also to calculate the 1=24,-- m=-1

phonon excitations ofJ=1) molecules. These calculations We assumegand it is generally truethat the orientational

require us to develop and implement a scheme for treatingnergies which are relevant are much less than the smallest

coupled translations and rotations. In this paper we presentenergy difference between successiMevels of a molecule

systematic analysis of the simplest case of this coupling10B for an ortho molecule andE for a para molecule

which occurs when the quantum numbgrcharacterizing Accordingly, we may consider only that part of the potential

free rotation remains a good quantum number. In that caswhich is diagonal in]J. When the potential is written in the

the well-known numerical schemes for solving the translaform of Eq. (2), it is easy to implement the truncation to

tion problem can be easily extended to include the effect oferms diagonal inJ. So for a fixed value ol we have the

the coupling to rotations. In addition, we also give analyticHamiltonian; as

expressions obtained by treating this coupling within pertur- 2

bation theory. As we will see, this analytic development en- HJ=p—+V0(r)+ BJ(J+1)Z+ > OAFTE(n)

ables us to interpret many of the numerical results in a mean- 2m =24 0

ingful way. In addition, we analyze in detail various .,

simplified models which illustrate our group theoretical X[Ip)Qul YETH (DI WIp'(]

analysis of the symmetry present in the system of coupled 72

translations and rotations. This analysis indicates that argu-  =— —V2+Vy(r)+BJ(J+ 1)+ Vy(r), (3)

ments for the degeneracies of coupled translation-rotation 2m

modes based on simple classical concepts are incorrect. {hereV,(r) is the orientationally dependent part of the po-

summary: in this paper we present an analysis based on ntential (the terms involvingA™) andZ is the unit operator.

merical, perturbative, and group theoretical methods. Furthermore, we consider the angular-dependent term in this
Up to now there have not been many theoretical studies oéxpansion to be a perturbation on the first texfg(r). For

energy levels in such irregular geometries like the octahedradach value of] the Hamiltonian; will give a manifold of

interstitial sites in G. A notable exception is the work of states which is the direct product of a manifold correspond-

van der Avoird and collaboratdfson CO in G,. That work  ing to various numbers of localized phonons being excited

examined an even more complicated situation in which thavith the manifold of (J+ 1) states having different values

rotational and translation degrees of freedom interacte@f m;. An important simplification is that spherical harmon-

strongly. As a result, the problem was analyzed numericallyics with1>2J have no nonzero matrix elements in the mani-

In contrast, for the present problem FitzGeratchl® applied ~ fold of states of angular momentudn

a number of analytic and semianalytic techniques to the the- Note that apart from the kinetic energy, this Hamiltonian

oretical study the spectra of hydrogen moleculesdg. Ghis 1S @ strictly local operator. Thus we solve the eigenvalue

paper may be regarded as an extension and systematizatiBfPblem on a discrete mesh of points on a cube centered at
of their approach. the octahedral site when the wave function is required to

vanish on the boundary of the cube. Each edge of the cube is
taken to bg —L,L] with mesh point spacing daL. In this
scheme the wave function at each mesh point is a
(2J+1)-component vector. We are mainly concerned with

Clearly the first step is to establish a satisfactory potentiathe manifoldJ=0 andJ=1, in which case the problem is
for the intercalated hydrogen molecule. This potential funchumerically not significantly harder than for a scalar prob-
tion V(r,Q) gives the energy of a hydrogen molecule whoselem. Even though the resulting matrix size is very large, it is
center of mass is at and whose orientation is specified by a block band matrix and is very sparse. The numerical results
Q=(6,). A convenient starting point is to use an atom-reported here were obtained from=1.65A and dL
atom potentidf to describe the interaction between each of=0.075 A, which requires diagonalization of a matiix
the two hydrogen atoms and the atoms in the confining strucxn where n=273375). However, we confirmed that a
ture. Unless otherwise indicated, all the results reported imoarse mesh points with=1.2 A anddL=0.17 A gives
this paper are obtained from the same WS77 potefttial, almost the same resultéwhere the matrix size isn
—AIr®+Bexp(—Cr), that is used in Ref. 5where A =14739). The large sparse matrix eigenvalue problem is
=5.94 eV, B=678.2 eV, andC=3.67 A %). solved using the packagepack.l’

In this paper we will mainly consider the octahedral in-  Since numerical results sometimes do not provide com-
terstitial site in solid G, but many of the considerations plete insight into the nature of the solutions, we have also
apply with slight modification to molecules confined within used perturbation theory to understand the results. In this
other structures such as single wall carbon nanottfhéke  approach we treat;(r) in Eq. (3) as the perturbation. The
determination of the potential(r,()) for H, in solid Gsgis  unperturbed problem, apart from the additive eneBg}(J
discussed in Appendix A. From the numerical evaluation of+ 1) is thus that for translations of the spherica=0) mol-
this potential we have extracted the expansion coefficientscule. This spectrum is not too different from that of a three-
when it is written in the following canonical form: dimensional harmonic oscillator. Accordingly, to qualita-

Il. GENERAL FORMULATION
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apply perturbation theory in which we develop an effective A?Zzp 15
Hamiltoniart® to describe the splitting of this manifold
which is characterized by a value dfand of N, the total where F” and F’ are the second and first derivatives of
number of phonon excitationgThe perturbative effects due F(r).

to coupling between manifolds of differedtis negligibly This expansion is good enough to reproduce most of the
small for hydrogen in &.°% This effective Hamiltonian is a results discussed in this paper. We note thattfis (i.e., the
matrix of dimensionalityD, where D=(2J+1)(N+1)(N  orientational potentialare zero for a harmonic potentfale.,

tively interpret our more accurate numerical results, we 1 2(877
i

S (=S lvaio ot @

+2)/2 and schematically is of the form F(r;)=1kr?] because the prefactorF(—F'/r;) is zero.
This can be also seen easily as follows. Assuming an atom-
H(N,J)=BJI(J+1)T+H +VD|AG_VOFF1VOFF atom potential between each H atom and the C atoms in the
W)= phonon™ V3 J ¢

g adjacent Gy molecules, we may write the potential of ap H
(4) molecule as

where Hpnonon gives the energy of the vqrious states with a V(rQ)=V,(r+ L pn)+Vy(r— % pn), (®)
total of N phonons. These energies are just those calculated

for a (J=0) molecule. Alsov7"® is the part ofV; which is ~ whereV, is the potential of a single atom due to the entire
diagonalwith respect to the number of phonoM ™ is the  octahedral cage in which it is confined,is a unit vector
part of V; which is off-diagonalwith respect to the number along the axis of the molecule, anpdis the separation be-
of phononsand¢ is the change in phonon energy caused bytween atoms in the molecule. As we shall see, the total po-

V§FF, tential is nearly isotropic. So we write
This effective Hamiltonian is defined by its matrix ele-
ments as V,(r)= 2 kr2+ 614, 9

(N, a; 3, M[H(I,N)[N,a";3,M") When we substitute this into EB), we obtain the result

=[BJJ+1)+EN o]0 0 Summ- V(r;Q)=Vo(r)+28(r’p?co6, ,— 3), (10)

’ M—M’ , whereé, , is the angle between the vectorandn andV, is
+|21 (N,a|Az ™ (r)N,a") independent ob, ,,. The point is that the orientationally de-
pendent part of the interaction depends on the anharmonic-

) J Ky ity: for a purely harmonic and isotropic interactidf, the
><<\]M|Yg’|'_"’I (Q)[IM")+ E 2 E z total potential energy is independent of the molecular orien-
N'#NLIT=1 # B=1 tation. Thus we expect rotation-translation coupling to be
X[EN,a_EN’,B]_1<N:a|A2/|I_M(r)|Nluﬂ) weak. On the other hand in nanotubes, where the quadratic

term isanisotropig this coupling will be more importarif.

X(N', BIAL M (NN, WIMYY #(Q)]dw)
Ill. ENERGY SPECTRUM OFA (J=0) H, MOLECULE

H_M/ ’
XAul Yo (Q)IMT), (5 We start by considering the eigenvalue spectrurfgfn

which the orientational dependence of the potential is ne-
glected. In this approximation, apart from the additive con-
stant BJ(J+1), the total energy(rotational plus transla-
tional) is the same as that of @£ 0) molecule. For most
urposes a J=0) molecule may be considered to be a
spherical molecule because the orientational wave function
YS(Q) is uniform over all orientations. Each eigenfunction
of Hy(J) is the product of a rotational function taken from
the manifold of 2+ 1 degenerate orientational wave func-
tions and a translational wave function which represents an
eigenfunction for a spherical molecule confined to a cage.

whereky=(N+1)(N+2)/2 and the states witN phonons
are labeledN, @, wherea runs from 1 toky.

We now briefly discuss how th&[™s of Eq. (2) are ob-
tained from the atom-atom potential between each H ato
and each carbon atom. Here we will assume that the ato
atom potential is of the fornf(|r;—ry|), wherer; andry
are the displacements of thth carbon and of the H atom,
respectively, relative to the center of the kFholecule. For
this form of potential, we show in Appendix A that

A?ZZWE YO(r)* jl (3x2—1) These translational wave functions satisfy
i -1 p2
XF([r2= % p2+ pxr; 1% dx, (6) Hot(r)= %+V0(r))¢k(r):Ek’ﬂk(r), (11
wherep is the separation between H atoms in therHol-  whereVy(r) is the potential discussed in Appendix A. The

ecule and the sum overis over all relevant neighboring indexk labels states which we might otherwise label by three
carbon atoms. It is instructive to expand this expression inndices, each quantum number characterizing the number of
p/r;, which yields excitations in each direction. Note that these unperturbed so-

214301-3
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HARMONIC ANHARMONIC (3) === T,
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TABLE |. Effect of a spherical symmetric perturbation ahy
states. ThdJ; states are characterized by the total number of

harmonic phonons. Wave functions in a spherical potential are char-
acterized by angular momentukh Here we give the effect of the

=1
A= A

(10)-:'5'--"(7):-;"(3) — T, o perturbationA (r/a)*, where(r2)=3q? for the isotropic harmonic
"‘-(1)—A2u:,§y_f '''' %— Ay oscillator in three spatial dimensions. In the last column we give the
(1) A shift in the average energy of the multiplet of states of a given value
! of N.
(1120 A2 — Eg322o2aloy? O)—E, N N.K Energy Avg.E
.:.;:::.,(1) S VAN I T (Hh— A
(6) w5 E ....... 3)— g . Egg 0 (0,0 15A 15A
()= Ag
1 1,9 35A 35A
2 (2,0 75A 65 A
(2,2 63 A
3 (3,2 119A 105A
(3,3 99 A

molecule in an octahedral interstitial site. In the left-most
panel we show the energy levels for a spherical harmonic
oscillator, with A#w» adjusted to correspond to the single-
FIG. 1. Energy levels of a spherical€£0) H, molecule con-  phonon levels of Hin an octahedral interstitial site ingg
fined in various ways. Her@) is the degeneracy and the symmetry Note that the levels are highly degenerate because the energy
labels are given. Left: The molecule is in a spherical harmonicdepends only on the total number of quanta. The symmetry
potentialV(r) = 3k(x?+y?+2?) or an anharmonic spherically sym- of the Hamiltonian is 03), the group of unitary three-
metric potentiali.e., a generic spherically symmetric potenti#or  yimensional matrices. We now add to this potential an anhar-

a harmonic spherically symmetric potential the energy depends on%onic term of the formsr®. This perturbation lowers the

on N, the total number of phonon excitations in the oscillators along

the three coordinate directions. For a spherically symmetric potengymmetry to that of the rotation group in three dimensions.

tial eigenstates are characterized by their total orbital angular mo’-A‘S"IS well kn(_)wn, eath elgegfurcglﬂndlré a r?enerlc _spZen-f
mentumL. Center: the molecule is in a potential appropriate to theCaY symmetric potential can be labeled by the magnitude o

octahedral interstitial site of orientationally disorderegn@m)  the orbital angular momenturh. Thus the single phonon
solid Cy. Right: the molecule is in a potential appropriate to the |€VelS are unsplit by this anharmonic perturbation and are
octahedral interstitial site of orientationally ordereBa@) solid now labeled as angulqr momemml State_sv whereas the
Cao, in which case the site symmetry$s. The potentials used for WO phonon levels split into a manifold of fiie=2 states
the interstitial cases are discussed in Appendix A. and oneL =0 state and similarly for states with more than
two phonons. In Fig. 1 we have taken the consténib be

lutions do not involve the coupling between rotations and that which best describes the anharmonicity of iHl Ceo.
translations. As discussed above, these eigenfunctions wefd€ energies of the perturbed levels are given in Table I.
obtained by converting the continuum equatidd) into a Next, we can|derWhat happens v_vhen the spherical pscn-
discrete equation on a mesh of points and solving the resultator potential is augmented by a cubic symmetry potential of
ing matrix eigenvalue problem using a sparse matrixthe formx(x*+y*+2z*—2r?). This potential is appropriate
routinel” for a spherical molecule in an octahedral interstitial when the
Since it happens that the energy levels and eigenfunctiorigeo are orientationally disordered and haveran3m crystal
we obtained numerically are not qualitatively different from Structure’. The degeneracy associated with spherical symme-
those of a spherical harmonic oscillator, we first study they is lifted,* but as shown here one retains cubic symmetry,

energy spectrum as perturbatiodis x, and\ are sequen- SO the three one-phonon states which transform ysand;
tially turned on in the following potential: are degenerate. The two-phonon states are of three different

symmetries. Onetgg) transforms likexy, Xz andyz This is
the lowest level. The next highest level is th@&ave sym-
metric combination which transforms lik€+y2+ z2. Then
+ N (XY +YyzZ+2zX). (12) one has a doublet al-wave (e,5) symmetry. This classifi-
cation scheme is continued in the higher-energy levels.
Figure 1 shows the evolution of the energy spectrum as peilthough we are not dealing with harmonic phonons, it
turbations are sequentially introduced which take the spheriis still useful to consider manifolds characterized by the
cal harmonic oscillator into the actual lower symmetry of aquantum numbers] and N, which are respectively the

(1) — (1) L2 [ 1) — A,

V(r)= 3 kr2+ort+ k(x*+y*+24— 214

214301-4
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TABLE Il. Energy-level systematics for aJ&0) molecule in an octahedral interstitial site of;CHere
we show the removal of degeneracy from a manifold of initial symme&tiy manifolds of final symmetryF
due to a perturbatioV, as calculated in lowest-order perturbation theory. Héris the total number of
phononsK is the angular momentum, and the other group theoretical labels are as in Fig. 1. We give a typical
eigenfunctiony to illustrate the symmetry. Herg is the degeneracgDeg) of the manifold ando?=(x?)
=(y?)=(z%). Here the coordinate axes coincide with the c|li@0] directions.

A 11 \% 17 F Deg. Energy
N=2K=2 r2y¥Q) k(XA+y*+74— 2% (x®—y?) Eq 2 L kot
Xy Tog 3 —25_4K0'4

N=3K=3 r3vy¥(Q) kOA+Yy -3 (C-3xrd) Ty 3 L kot
x(y?=2%) Ty 3 - Zkot

Xyz A 1 - 2yo*

N=1K=1T;, ry¥ Q) ANXY+yz+2zX) E, 2 —\a?
A, 1 2602

N=2K=2T,, Xy NXy+yz+2zX) Eq 2 —\o?
Aq 1 2\ g?

N=3K=3T,, x(y?—72%) NXy+yz+2zX) E, 2 3Na?
A, 1 —3\o?

N=3K=3T;, (x3—Exr?) A(Xy+yz+2zX) E, 2 Fho?
A, 1 —3no?

N=3K=1T,, x(r’— 302 NXy+yz+2zX) E, 2 3\o?
A 1 — 6\ g2

=

rotational angular momentum and the total number of IV. ENERGY SPECTRUM OF A J=1 MOLECULE

phonons, at least up %d=3. Quantitative results are given  \yg now discuss the energy spectrum of an ortho molecule

in Tgble ”', . ) with (J=1). As we have seen forJ&0) molecules, our
Finally, in the right-most panel of Fig. 1 we show the

further reduction in degeneracy which occurs when the octa- TABLE IIl. Phonon levels for a §=0) H, molecule in an oc-
hedral interstitial is surrounded bysgmolecules which have tahedral site for orientationally ordered and disordergg @spec-
e longrange. crer assocated wih 1Ra3 ooyl U EXTST e i gt 0 e s arery
structure>™*? In this case, each interstitial is uniaxiabith o1 y y g

—r?), where the¢ axis is taken to lie along the threefold Pa3 (S)
axis of the interstitial site. There are four symmetry related N a
interstitial sites, each of which has its threefold axis along a
different[1,1,1] direction. The resolution of degeneracy in 1 14.38 13.16
the presence of this uniaxial perturbation is also given in 1 2,3 14.38 14.47
Table II. In all these cases, no interactions between rotations
and translations are involved. 2 1 28.26 26.69
We have solved the eigenvalue problem of Edl) on a 2 2,3 28.26 27.49
mesh of points and obtained the results given in Table Ill. 2 4 30.69 30.41
Results labeled “Octahedral” are those for the orientation- 2 5,6 31.73 31.39
ally disordered phase, where eack, @olecule is replaced
by a sphere of carbon atoms as is discussed in Ref. 5. Since 3 1 41.62 40.10
these numerical results lead to manifolds of energy levels 3 2,3 44.39 42.48
associated with a given number of phonons and the degen- 3 4 44.39 42.4%
eracies of these manifolds are as expected from our general 3 5.6 45.23 44.40
discussion above, we conclude that the potential seen by a 3 7 45.23 45.83
spherical H molecule in the low-lying phonon levels is not 3 8,9 50.07 49.36
very different from that of a spherical harmonic oscillator. 3 10 50.07 4985

However, as noted in Ref. 5, the effective harmonic potential
must be taken to be a self-consistently renormalized potentidrhese energies are accidentally almost identical. However, group
to take account of the larger zero-point motion. theory indicates that these levels are generically nondegenerate.

214301-5
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TABLE IV. Matrix elements off Na|AZ(r)|01) (in meV) for H, TABLE V. Nonzero matrix elements ofla|A3(r)|18) (in
in octahedral an&g potential, respectively. Elements not listed are meV) for H, in octahedral and gSpotential, respectively. We also
expected to be zero by symmetry. Numerically such elements werrote that(1«|A(r)|18)=(18|A%(r)|1le) and (1a|A, (r)|18)
found to be very small. For this table the wave functions within =(—1)(1a|AJ(r)|18)*. For the octahedral symmetry, the wave
each degenerate manifold were chosen to make the matrix elemerftsctions within each degenerate manifold were chosen to make the
of AX(r) as simple as possible. F6ta3 symmetry, thez axis is  matrix elements oA3(r) as simple as possible.
taken to be the local threefold axis. Therefore the octahedral wave

functions are not necessarily identical to fhe3 wave functions. (La|A5(r)[18) Octahedral Pa3 (Ss)
Na|A3(r)|01 Octahedraf 3
(Na|Aj(r)|01) Pa3 (Sy) . N P

N @ T 0 1 1 (-3.8530) (2.020,0)

0 1 0 (0,0 (—1.286,0) 0 2 2 (—3.853,0) 1.326,0)

2 1 0 (0,0 (—0.506,0) 0 3 3 (7.708,0 (—1.326,0)

2 1 1 (@,0) (0,0 1 1 2 (0,0 (—2.109;-1.131)

2 1 2 (0,0 (0,0 1 1 3 (0,0.882 (1.137-2.104)

2 2 1 (0g) (—0.176-0.106) 1 2 2 (0,0 (1.534,2.44p

2 3 2 (0) (2.413-2.388) 1 2 3 (—0.881,0) (2.435;1.533)

2 4 0 0,0 (—0.224,0) 1 3 3 (0,0 (—1.531-2.442)

2 5 0 (0,0 (0,0

2 5 2 (8,0 (—6.500-1.754) 2 1 1 (—4.119,0) (0,0

2 6 0 (+28,0) (0,0) 2 1 2 (0,0.880 (—0.225-3.022)

2 6 1 (0,0 (—8.862,-1.400) 2 1 3 (0,0 (—3.022,0.226)

2 2 2 (0,0 (0.560,0.83%
@0ur numerical results give=0.859 andB3=5.662(in meV). 2 2 3 (0,0 (—0.830,0.556)
2 3 3 (0,0 (—0.565;-0.831)
numerical results indicate that fod up to, say, 3, one can
clearly identify the manifold ofN phonons. We therefore
discuss the systematics of these manifolds. 3
2 (Lut DY) P= 15~ (15
A. Zero-phonon manifold ®

We first consider the case di=1 with N=0 phonons. gg that

This manifold is described by the effective Hamiltonian
1
H=(2B+AE)T+8(33— 3). (13) AE=—1o— 2 Enu [OJANIN.o)? (16
N+#0,a r

The splittings must be zero when & is orientationally dis- In Appendix B we give a model calculation of an,H

ordered. From Eq(5) one sees that because the sphericamolecule in a spherical cavity from which we evaluate Eq.
harmonics are traceless, the average energy adfiifthas (16) to give AE=—0.14 meV. In this calculation the trans-
nonzero contributions only from terms which involve cou- lational wave functions are assumed to be those of a har-
pling to excited phonon state@n Ref. 5 a negligibly small monic oscillator with(r2)=0.1875 &. As noted, the result
shift was found due to off-diagonal effects inwhich we is very sensitive to the value used fGr’). For octahedral

ignore here. From Eq.(5) we find that symmetry(i.e., for orientationally disorderedgg) we evalu-
ate Eq.(16) using the data in Table IV. Thereby we find a

shift AE=—0.133 meV. The same approach using our nu-

1
AE=-3 > EnAY [(0,AALNIN,a)|?] merical solutions for the phonon states ofla=(0) molecule
N#0a wr for the orientationally ordere®a3 phase yields the result,
X {1+ 7)|Y5(Q) | 1)|%. (14 AE=-0.141 meV, compared to the experimental value

AE=—0.35 meV. Again we mention that a small change in
To implement this equation, we first construdt(r) as dis- ~ Pparameters could easily lead to a much larger calculated
cussed in Eq(6). Then matrix elements oA (r) are taken value of AE. From t'he numerical solution for the three com-
between phonon states forJa=0 molecule which we ob- Ponent wave function of aj=1) molecule on a mesh of
tained previously and which are labelsga (|0,1) being the  points, we obtained the valuAE=—0.16 for the Pa3
phonon ground stateThereby we obtained the results given phase. The various numerical results AJE are summarized
in Tables IV and V. In Eq.(14) the matrix elements of in Table VI. B
spherical harmonic¥?'(Q) are taken between orientational  From Eq.(5) we also find the splittingin the Pa3 phase
states labeled by andJ,. To evaluateAE we use to be
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TABLE VI. Shift of the center of gravitfCG) and splitting(in meV) of the (J=1,N=0) manifold when
the nominally octahedral site has octahedral 8gdymmetry.

Our calculations Experime‘ht
Quantity Octahedral@},) Pa3 (Sg) Pa3 (Sg)

Shift of CG? —-0.134 —-0.141 0.35
Shift of CG -0.16 0.35
Splitting first ordet 0 0.487

Second ordér 0 —0.010

Total 0 0.477 0.70
TotaP 0 0.46 0.70

8Perturbation result of Eq16).

®Obtained by direct diagonalization of ER).

‘Perturbation result of Eq17).
9From Ref. 5.

~ 304Ajon 3

ot 70r g E(e) Y[(0,1A(r)|e)|?

+[(0,A3(r)|e)|2—2[(0,A5(r)|e)|?],

Table VI.

B. One-phonon manifold

1. Numerical results

Next we consider the manifold=1 with N=1 phonon.
Again only Y{" with | =2 contributes, so that we may write

H(LD) 40 =Cap|HIN=1J=1)|a’u")
:[ZB+ E0+ﬁwa]5,u.,,u,’5a,a’

+(1a|ALH (N)|1a’)

17

where the quantization axis is taken to lie along the threefold
axis of symmetry of the interstitial site. Using the matrix
elements given in Table 1V, we find that the contribution to
the splitting § comes almost exclusively from the diagonal
term (0,1A50,1) and we obtain the results listed in

X(1pl Y5 (Q)|1p")

Ky 1
_N'Zzﬁl azl % En',on—E14
X(LalAL ()N ")
X(N'a"| A8~ (1)|1a)
X(Lu| Y5 (Q)|1p")

XA Y5 ()|1p').

(18)

This is a 9x9 matrix, which gives the 9J=1,N=1) levels.

Since the first term gives rise to the removal of degeneracy
expected from group theoretical considerations, we did not
include the second term in our numerical evaluations. This

procedure was sufficiently accurate to provide a useful check
on the validity of the more accurate numerical solutions for
the three-component wave functions of our set of mesh
points. In Table VII these numerical resu(tull mesh” ) are

given and are compared to the results using perturbation

TABLE VII. Energy (in meV) of J=1 single-phonon states where zero-of-energy is taken tobe 2

Octahedral Q) Pa3 (S)
v Full mesh? Perturbatior? v Full mesh? Perturbatior?
Tig 13.11 13.14 Aq 12,59 1252
Tig 13.11 13.14 E, 12.82 12.87
Tig 13.11 13.14 Eq 12.82 12.87
ng 13.6 13.68 Eg 13.47 13.51
ng 13.6 13.68 Eg 13.47 13.51
ng 13.6 13.68 Ag 14.20 14.16
Ag 15.61 15.78 Ag 15.75 15.31
Eg 16.46. 16.60 Eg 16.60 15.79
E 16.46. 16.60 E 16.60 15.79

«

aSolution to Eq.(3) for the three component wave function on a mesh of points.
bSolution to Eq.(5) using wave functions and energies forJa0 molecule as previously determined

numerically on a mesh of points.
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theory, as in Eq(18). As can be seen, the two approaches  spHERICAL SPHERICAL OCTAHEDRAL Pa3 (Sg) 4 E (meV)
yield quite compatible results.
NO ROTON-
PHONON -31
2. Qualitative remarks COUPLING Eg: xX-yY, -
. . ;(1)E=4/3 r 2Z-yY=xX () _Eg, L
Some additional comments on E@.8) are in order. The POR0 Q) i
first line of this equation gives the energy at first order in i
perturbation theory. At this order the wave function remains 20
a product of the spatial ground-state spatial wave function Ag xxayveez /D) Ag |
for aJ=0 molecule times d=1 rotational wave function. (1)—- 5
At this level of approximation there is no dynamical cou- E=2/15 r, -
pling between translation and rotation. In second-order per- 9_fold (S)T L
turbation theory we see that admixtures of two phonon states EE— ) 29
which are multiplied by different rotational states are intro-  J=1®N=I% ' -
duced. For example, consider the situation when the mol- Mt i
ecule is in a uniaxial symmetry site and &), |Y), and|Z) =L 1y Az i
be theJ=1 states for which respectivell, J,, andJ, are Vv Tig xz2X, § >3
zero. If, for simplicity, we assume that the unperturbed spa- yg—zﬁ)f(, |
tial wave function is spherically symmetric, then the state S .. _Eg |}
which without perturbation was | O—
(3) m—, i
CO|Z>e‘r2’(4”2), (19) g )ng: X% Bg 2]
yZ+zY. tz) A_ -
xY+yX Y1) 8 L

whereC, is a normalization constant, is now

FIG. 2. Removal of degeneracy as roton-phonon interactions are

CilZ)e T4 1 Cy|X)zxe T4 4 Cy|Y)zy e 40D, introduced and the site symmetry is lowered. The degeneracy is
(20) indicated by the number in parentheses. At the far left is shown the

completely degenerate level when spherical symmetry is assumed

whereC,~C, andC, is small compared t€,. The pointis and no roton-phonon coupling is present. The next panel shows the
that this formulation allows the molecule to change its ori-€ffect of allowing roton-phonon interactions but preserving overall

entational state as it translates. Foy id Cgy this effect is spherical symmetry. HerK is the total(orbital plus orientational

small, however, in less symmetrical cavities, as inangular momentum. In the next panel spherical symmetry is low-

nanotube§? this effect can become more important. ered to octahedral symmetry which is appropriate for ikl the

octahedral interstitial site in orientationally disordereg CThe far
. . right panel(and the energy scaleapplies to the case of Hin
3. Group theoretical analysis orientationally ordered & in which case the site symmetry .
In Fig. 2 we show the influence of roton-phonon coupling

and local site symmetry on the energy spectrum of the one- I=Ty@T1g®Eg®Ag, (21
phonon §=1) manifold. At the far left we start from the and the basis functions associated with these irreducible rep-
case of highest symmetry when the phonon and rotationgesentations are given in Table VIIl. As mentioned above, for
separately have complete rotational invariance and neemperatures below about 260 K, thgo@nolecules order
phonon-roton coupling is present. In this case the manifolgnto a structure of crystal symmet®a3,°2in which case

of nine states[three one-phonon states three J=1)  the formerly octahedral interstitial has the lowe

stateg is completely degenerate. When roton-phonon cousymmetry*® Use of the relevant character table shows that
pling is included (but the environment is still spherically now

symmetrig we have overall rotational invariance and the re- .
sulting eigenstates are characterized by their total angular I'=3A;®3E4®3E, , (22
momentunK. The roton-phonon coupling causes states withyhere E, is a complex one-dimensional representation and
differentK to have different energy, as illustrated in Appen-g?* is its. complex conjugate partner. The basis functions as-
dix B3. (The size of the spliting shown in the figure is sociated with these irreducible representations are given in
adjusted to agree with the center of gravity of the appropriatrable VIII. The most important conclusion from this analysis
levels for cubic site symmetyy. is that the energy eigenfunctions aret simply products of
The two right-hand columns pertain to the situation whentranslational and rotation wave functions, but instead are lin-
a (J=1) hydrogen molecule occupies the octahedral interstiear combinations of such products. This type of wave func-
tial site of Go. When the G, molecules are orientationally tion reflects the fact that symmetry operations act simulta-
disordered the interstitial site h&¥, symmetry and we con- neously on the position and the orientation of a molecule.
sider that case first. Use of the character tables forQhe To emphasize this fact we give, in Fig. 3, a pictorial rep-
group indicates that the original nine dimensional reducibleresentations of the translation-rotation wave functions. This
representatiod’ is decomposed into irreducible representa-representation is to be interpreted as follows. We know that
tion of the Oy, group as the rotational wave functions for a frde= 1 molecule can be

214301-8
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TABLE VIII. Basis functions within the one-phononJ€ 1) manifold. Herex, y, and z are the one-
phonon states with a single excitation in the phonon associated with theindz direction, respectively?
In terms of them; states (denoted |m;)) within (J=1) we have X=(|—1)—[1))/\2, Y=i(|1)
+|—1))/y2, andz=|0).

Oy, symmetry?
Tag (xZ+zX), (yZ+zY), (XY+yX)
Tig (xZ=2X), (yZ=2Y), (xY=yX)
Eq (22Z—=yY—xX), (XX=VYY)
Aq (xX+yY+2z2)

Pa3 symmetry”

Eg andEg (XZ+zX,yZ+1zY), (XZ—zX,yZ—-2zY), (xX
=YY, xY+yX)
Ag zZ, xX+yY, XY—yX

&The x, y, andz directions are taken to coincide with the fourfold axis@yf.
PThe z direction coincides with the threefold axis 8§.

taken to be analogs g, p,, andp, functions and we will
label theserotational wave functions as, Y, or Z. For in-
stance | X)~sin#cos¢, |Y)~sinésing, and |Z)~cosé.
These wave functions have two lobes, one positive, the othe
negative, aligned along the axis associated with their state
label. When such a rotational function is multiplied by a
one-phonon function in the direction, (x) denotes a wave
function for a single-phonon excitation in thedirection),

£
G}@%@@
3

. : : [ IxX -
the total wave function will be an odd function ef Thus XYy Y xXoyy>
the wave functiorjxX) is an odd function ok and is there- K=2Tz K=2 Eg
fore depicted by twop, functions, one at positivex and x

another at-x, with the signs of the two lobes changed. For
simplicity in the figures we show only those functions which
have appropriate dependence in the plane of the paper, whic
is taken to be thex-y plane. At the upper left we show an
xy-like function. It has two otheit,; symmetry partners
which arexzlike andyzlike. At the upper right we show one
of the twoE functions which isx?—y?-like. These fivet,,
andEg functions comprise the manifold of total angular mo-
mentumK =2 states. Within spherical symmetry all five of
these states are degenerate in energy. In the lower left of Fig
3 we show thez-like function oft,; symmetry. Its other two IXY-yX> IxX+yY+2Z>
partners are obtained by cyclically permutirgy, and z K=1 K=0
These three functions comprise the manifold of total angular
momentumK =1 states, which transform under rotation as a
vector. Finally at the lower right we show the angular mo-
mentumK=0 state. Thus in spherical symmetry, the nine
J=1 single phonon states give rise to three distinct energ
manifolds which have degeneracies 1, 3, and 5, correspon
ing respectively to total angular momentuf=0, K=1, wave function is multiplied by a translational wave functips),
andK=2. , ly), or |z), where for instancéx) ~x exd — 5(x/0)?]. The presence
The simplest classical arguments do not reproduce thgf 5 phonon in the ,, coordinate thus causes the wave function to
above results. For instance, one might argue that translatiogk an odd function of,,, as one sees in the diagrams. As indicated
can occur equivalently along either of three equivalent cooriy Fig. 2, the total angular momentuky which is the sum of the

dinate axes. In each case, one can have the molecule orientggyular momentum of the phonon and that of rotation, is a good
along the axis of translational motion or perpendicular to thaguantum number whose value is indicated. Top, lef€a2, Ty,

axis. This argument would suggest that the nine levels breafunction; top right: ak =2, E, function; bottom left: aK=1, Ty,
into a threefold degenerate energy level in which the molfunction; and bottom right &=0, A, function.

e
@@8%
S

FIG. 3. Translation-rotation wave functions for d<1) H,
molecule in an octahedral interstitial site with one phonon. Here the
plane of the paper is thg-y plane and for simplicity only the
dependence in this plane is depicted. Each figure eight represents an

) or |Y) orientational wave function and the sign associated with
ach lobe of thisp-like function is indicated. Each orientational
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E (meV) tron, processes in which a para molecule is not converted to
A an ortho molecule are forbidden, or more correctly speaking,
g are proportional to the coherent cross sectipnwhich is
Pl very small compared to incoherent cross sectdnHence
4 J=IN=1 the transitionTp will not have a noticeable contribution to
T ,i the total cross section.
P ITB We next discuss the contribution to the total spectrum
S from processes in which either @=0) molecule is con-
tTE 14 verted to J=1) molecule(para-ortho conversion, labeled as
J=0 N=1 TJoiN=0 @ | T, in Fig. 4) or a single phonon is creatéds shown by'g).
A Ortho Hy (x) Our calculations presented so far indicate that both processes
Tp: T will give features around 14 meV in the neutron spectrum.
: L In Appendix C we find that the cross section due to para-
e -0 ortho conversior(indicated by the subscript-81) is given
Para Hy (1-x) by
. , . " Pa 3 k’ 1 2
FIG. 4. A schematic representation of possible transitions be- —(1-x)|b’ 11( ) e 2W(x)
tween the rotation-phonon energy levels that could be observed in a QL IE 051 4 k
neutron-scattering experiment. At low temperature, only the (
=0,N=0) and J=1N=0) states are populated and therefore the
transition)'l'c car?not be ob)served at Iovf/) tgmperature The transition X % OB~ (EctEm)], 23

Tp is proportional to the coherent cross section gfatid therefore
very small. The transition§g and T, have comparable cross sec- WhereN is the total number of Himoleculesk (k) is wave
tions (see text for details vector of the incidentscatteregineutron,k=k’ —k, x is the
fraction of H, molecules which are orth@dd J) molecules,
ecule is oriented longitudinally and a sixfold level in which p is the separation between protons in theriblecule b’ is
the molecule is oriented transversely. This discussion show€ spin-dependent cross section in the proton-neutron
that it is essential to treat the translation-rotation problenPseudopotentialj, is the nth-order spherical Bessel func-
quantum mechanically to get the correct degeneracy. tion, andW(«) is the Debye-Waller factor which we take to
be 5 «k?(u?). Also, E is the energy loss of the neutron, and
E.+E,, is the para-ortho conversion energy when the final
state of the ortho ha3,=m.

In the experimental study of Fitzgeradd al.® the neutron Similarly, the cross section due to ortho-para conversion,
energy-loss spectrum of HHrapped in G, was measured 9°0/dQJE); o has the same expression as E28) but now
with an energy resolution of 0.3 meV. The spectrum showsghe factor (1-x) is replaced by. Hence the ratio of the total
surprisingly rich features. However, the origin of these fea-Cross section for ortho to para conversion to that of para to
tures was not successfully identified in detail. Since the obortho conversion is (% x) to x, wherex is the ortho concen-
served neutron spectrum is a direct probe of the intermolecuration. Normally the ratio of energy gain to energy loss cross
lar potential between JHmolecules and g host lattice, it is sections follows the Boltzmann factor. Here, the populations
very important to see if available atom-atom potentials carfre set byx rather than by the temperature.
give a spectrum which is similar to the experimental data. A We now discuss the cross section due to phonon creation
suitable analysis of the high-resolution inelastic neutronon a J=1) molecule(indicated here by the subscript 1
scattering data in Ref. 5 should, in principle, give a detailed— 1), which is calculated in Appendix C. These transitions
information about the intermolecular potential between H are shown a3y in Fig. 4. The result requires a knowledge of
molecules and the host lattice. the translation-rotation wave function of the, holecule.

Figure 4 illustrates several possible transitions, involvingWe find that
both rotational and vibrational excitations, that could be ob-

V. NEUTRON SPECTRUM

served in a neutron-scattering experiment foy id solid P o . k' ,224: 1)

Ceo- In order to estimate the intensities of these transitions 0Q JE =Nx1-b Siins (24)
and the corresponding neutron spectrum, in Appendix C we

derive the inelastic neutron cross section for trappedndl-  where the cross sectioﬁ(llll,n are given in Eqs.(C34),

ecules in a powder sample at low temperature. Below wéC35), and(C43 of Appendix C.
discuss the contribution to the total neutron spectrum from In Fig. 5 T represents the transitions from thé=(1,N

each of these transitions, labeled Bs, ... ,Tg, and then =0) levels to the manifold of nine energy levels af (
compare the calculated spectrum with experimental data us=1,N=1). Accordingly, we expect several transitions with
ing various atom-atom potentials. nonzero amplitude and thus rich features in the total neutron

We start with the transitions involving phonon creation in cross section.
para hydrogen, as shown By, in Fig. 4. Because of the Also one may consider the cross section integrated over
spin-dependent interaction between the proton and the neenergy, which is a useful quantity to indicate the relative
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J=1N=1 A A

-3

Experiment

S S T S N N T A N O O WS77 potential
J=IN=Q T

0.006----4--3--F
0.036
Intensity (arb.)

—-0.072——]
0.000
0.104-----}-
0.000

- —-0.008 =

—-—0.160
-—0.050

—=0.073

==0.060

1088

)
]

FIG. 5. The calculated transition probabilities from thg ( ‘ ‘ ‘ ‘
=1N=0) levels to the ninefold manifold ofJ=1,N=1) levels at 10 12 14 16 18 20
T=4 K. The energies of the levels are given in Table \Whder Neutron Energy Loss (meV)
full mesh. For each pair of energies these transition probabilities
represent the appropriate sum over degenerate levels. Note that FIG. 7. Neutron energy-loss spectrumiddle) at 4.2 K. The
there are at least eight transitions with comparable probability, sugbottom curve is the result from our calculation using the WS77
gesting that rich features could be observed in a neutron-scatterimgptential. The dashed and gray lines are the contributions from ro-
experiment. tational and vibrational excitations, respectively. The top curve is

the spectrum after arbitrarily scalirid” by half, indicating that the

strength of the different transitions discussed above. The raprientational potential used in our calculations is too anisotropic as
tio rp of the integrated neutron energy-loss cross section fofar as the center-of-mass motion is concerned.
phonon creatior{processTg in Fig. 4) divided by that for

para-ortho conversiofprocessT, in Fig. 4 was found in ratio of the cross sections at energy gain to those of energy
Appendix C to be loss does satisfy detailed balance. The ratio of the total cross

section(counting both energy loss and energy gdor tran-
sitions within the §=1) ground manifold to that due to para

L1 N2 o 1 N2
rp=£;<2(u2> XLio(z kp)™+ 2]2(z kp) ]. (25  to ortho conversion was found at zero temperature to be
27 (1-%)j1(3 kp)? L
S _ o X 4jo(3 kp)
This ratio is plotted as a function af for x=3/4 in Fig. 6. N=T=0=75 =1 = (26)
15/1(3 «p)

Since this ratio is of order unity, the energy-loss spectrum
will display features due to both phonons and para-orth@eigure 6 shows that this ratio is quite small and therefore

conversion. experimental observation of this transitidhe., Tg~0.7
In Appendix C we also calculate the zero-phonon orthomev shown in Fig. #would be very difficult.
cross section for the transition shownBsin Fig. 4. Since Figure 7 shows the neutron energy-loss spectrum and the

the J=1) levels are in thermal equilibrium, in this case the calculated total spectrum using the same potential, the so-
called WS77 model® used by FitzGeraldet al® Even

4.0 ‘ ‘ ; 7 though the calculated spectrum is wider than the experimen-
' tal spectrum, it is still possible to make a one to one corre-
spondence between calculation and experiment as is shown
by arrows in Fig. 7. The top curve in this figure shows what
the spectrum looks like if the orientational part of the poten-
tial is scaled by about half. The agreement between the data
and calculations is somewhat better after this arbitrary scal-
ing, indicating that the potential used is too anisotropic for
the center-of-mass motion of,Hnolecule but at the same
time it is too weak for the orientational part of, fbecause it
gives too small a result fob, the splitting of the §=1)
ground manifold.

We also tested other potentials commonly used in the lit-
erature and these results are shown in Fig. 8. The top curve is
from Novaco’s 6-12 potential which was developed to study
hydrogen on graphité Clearly this potential gives too low

FIG. 6. The solid curve is the ratig of the single-phonon cross Phonon energies and too little splitting of th@<1) levels
section to that from para-ortho conversion as given in@g as a  for H, in solid Ggo. The other two curves in Fig. 8 are 6-exp
function of momentum transfer. The dotted line shows<sg.,  potentials tabulated in Ref. 15. The spectrum from these po-
(T=0) as given in Eq(26). The experimental situation of Ref. 5 tentials does not agree with experiment either. We also
corresponds to a momentum transfer between 2 and 4 A searched the potential parametérandB for 6-12 andA, B,

Ratios

0.0 = : : -
0.0 1.0 2.0 3.0 4.0 5.0

Momentum transfer (A™)
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4.0
Novaco 6-12 pot. (3=0.21 meV) — 30K a5
A=4.136 oV A° — 80K =
B= 1900.17 eV A" —— 150K _30F &
£ o5
g 7 ) = 20
T ] | =
< g In(I/1,)=—AE/KT
S | Universal 6-exp pot. (8=0.21 meV) = f 15 - () d
= . = i ' AE=14.8 meV
2 | A=6.678 oV A S b ; o e ‘
o B= 1821.25‘ev 2 I'l \ 0.05 0.10 0.15
£ |cea12 i z il 1/kT (meV™)
MPD77 8-exp pot. (8=0.21 meV) E / !
A=6.288 eV A° |
B=1374.26 eV
=393 A"

2 6 10 14 18
Neutron Energy Gain (meV)

FIG. 8. Neutron energy-loss spectrums obtained from various
commonly used intermolecular potentials. For each potential we
give the value of, the splitting of the {=1) zero-phonon levels, FIG. 9. Temperature-dependent neutron energy gain spectrum of
which may be compared to the experimentally determined value Hz in Cq (the data is taken from Ref)5The inset shows Iio)
=0.75 meV(Ref. 5. Note that the average phonon energies of thevVersus IKT, wherel is the intensity of the feature at about 28 meV.
first two potentials(top and middle curvesare way off from the ~ The slope of the line indicates an activation energy barrier of 14.8
observed value of14 meV. meV.

Neutron Energy Gain (meV)

that the calculations in this paper will motivate more detailed

and C for 6-exp types of potentials. However, we were notg,heriments at higher resolution to elucidate the structure of
able to improve the fit to experiment using these atom-aton,q roton-phonon spectrum.

potentials. Hence it seems that simple atom-atom potential \ve may summarize our main conclusions as follows:
does not describe the details of the-8gj interaction well. It « We have presented a systematic perturbative approach to
is an open and important question to find a better potentiafhe calculation of the roton-phonon spectrum of hydrogen
can reproduce the experimental spectrum better. It is also @folecules in confined geometry. Our calculations agree with
important to see how well the potentials obtained fromthe group theoretical analysis for the geometries considered
density-functional theory within local-density approximation here.
will do. « In a general way, the techniques of this pafiese of the
Finally, in addition to features observed near 14 meV,atom-atom potential combined with perturbation théonay
Fitzgeraldet al® also observed a feature at about 28 meV iNprove useful to treat hydrogen molecules in other confined
the energy gain time-of-flight spectrum. This energy is abougeometries, in particular in or on nanotubes. We are currently
twice that of either the para-ortho conversion energy or thenalyzing this situation.
energy of the translational phonon for ap kholecule in an « We give a calculation of the expected energy-loss spec-
octahedral interstitial site. Clearly this feature represents thgum from hydrogen in g, in the energy range where
energy of two excitations, but it was not clear whether thesghonons and para-ortho conversion both are important. We
would be two phonons, one phonon, and one ortho-para trafind that none of the traditional 6-12 and 6-exp types of
sition, or two ortho-para transitions. In Fig. 9 we show thepotentials give good results for the detailed energy depen-
temperature dependence of the total intensity of this featurgjence of the observed phonon spectrum, although the WS77
This temperature dependence follows a thermal activatiopotential® we used was definitely the most satisfactory. It is
with an energy of about 14 meV. Thus the initial state musta theoretical challenge to determine a potential which fully
consist of one thermally excited phonon and the transitiorteproduces the observed spectrum.
observed destroys one thermal phonon and converts one « \We identify the feature at 28 meV in the energy gain
ortho moleculewhich occurs with temperature-independentspectrum as consisting of conversion of one ortho molecule
probability x) to a para molecule, thus giving the observedto a para molecule combined with annihilation of a single
energy of about 28 meV. phonon. This identification is uniquely indicated by the tem-
perature dependence of this feature.

VI. CONCLUSIONS
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atom-atom potentiéﬁ Unless otherwise indicated, all the re- " . 0

sults reported in this paper are obtained from the same po- AzFZ J Y2|(n)*; Bor (i)Yo (6,0)dQ. (A7)

tential — A/r®+ B exp(—Cr) that is used in Ref. BwhereA

=5.94eV K, B=678.2 eV, andC=3.67 A'1). Using the addition theorem for spherical harmofficae
We consider two cases depending on the orientationdiave

state of Gy molecules. When the molecules in the surround-

ing cage are orientationally disordered, we distribute the car- j \/i

bon centers uniformly over the surface of a sphere. This case Az = 2 Ya(n)* 2 Boy(ri) v4m/(2L+1)

corresponds to the octahedral symmetry discussed in the text.

The resulting integration of the atom-atom potential over a Vo ONNY Pk

spherical surface is done analytically in Ref. 5 and therefore XE Ya (MY (1) d0

is not given here. For thBa3 symmetry, the g, molecules

are oriented according to theRa3 settings and then the :E Bz,(ri)\/47r/(2I+1)Y2’|(Fi)*. (A8)
total potential and\|"'s are calculated on a mesh points of a !

cube centered at the octahedral site. Below we derive a cofEor AT we get

venient way to obtain thé,s from the atom-atom potential.

We write the potentiaV/,.c between a single H atom and m_ mon 1 5
a single C atom as Az —2772 Yo (r)* 71(3X —-1)

Vic=F(r), (A1) XE([r2+ £ p2+1;px]¥3)dx. (A9)

wherer is the displacement of the C atom relative to the H
atom. Thus the interactiovi(H,) of a H, molecule with a C
atom can be written as

For power-law functions (i.e., F~1/r2"), this integral can
be done analytically.

APPENDIX B: SPHERICAL CAVITY

V(Hp)= > FL(r*+ i p*+opr-m™],  (A2) . . o _
o=+1 In this appendix we apply our formalism discussed in the

h i< the displ tof the C at lative 1o th text to a simple toy model to utilize the main physics of
w r-_:[re nofw:hls e 'Slp aclemerr: 0 ? atom retalve f[) equantum roton-phonon dynamics of g hholecule confined
cen er of the B molecule whose atoms are at positions;, 5 spherically symmetric cavity for which the potential

pn wheren is a unit vector specifying the orientation of differs perturbatively from harmonic.
the molecular axis of the fHimolecule. Then

1. Orientationally dependent potential

E E f YR(M*FL(r{+3p%+opri-n)H2dQ, For a diatomic molecule for which the spherical part of
(A3) the potential is that of an isotropic spherical oscillator, we
take the orientationally dependent part of the potential to be
whered() indicates an integration over all orientationsrof
and the sum oveiris over all neighboring carbon atoms. We U(r,€2)
use this to get
=f(r)[(Xsin@ cos¢+y sin b sinp+zcosh)’— L

1
Ad=Vo=2\72, f FL(rZ+3p%+ prix)Y2dx. ®
Lot (Ad) wherex=x/r, y=y/r, andz=z/r.
This potential can be written in the canonical form of Eq.
To get theA[™s for | >0 we write (2) with

- 8 -
2 F(ri+ G+ oprin) Y2 =2 Bau(r)Yau(0r,n), AP=TE (DY) (B2)
(AS)

where 6, , is the angle between the vectarsand n. We 2. Energy shift of the J=1 manifold
have that To evaluate Eq(16) for the shift in the center of gravity
of the J=1 zero phonon levels, we need the wave function

L of the ground state, namely
Ba(r) =272, jo F[(r?+ % p?+ opricosd)*?]

. Yolr) = e 147, (B3)
X Y5 (6)sinedé. A6
21(0) (A6) wherea= o~ ¥%(24) %4 Also we can write the two-phonon
Now substitute Eq(A5) into Eq. (A3) to get excited statesfor spherical symmetpyas
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(LoD= B(r1a)2Y(T)e " 147, (B4)
2m 2

for m=-2,—1,0,1,2, and for angular momentum= 2 and
where 8= o~ %2,/2/15(27) " ¥4 The sixth two-phonon state

PHYSICAL REVIEW B 66, 214301 (2002

ILp= i1)=1(%) Po(r),  |Lp=0)=(2/o)ho(r).
(B15)

is ans-wave state, whose wave function we do not need. Wgye oy wish to include the effect of the perturbation of the

are

P D=o[(rlo)*~7(rl o) Y3()e 4, (B5)

for m=—-2,—1,0,1,2, and where= o~ %2,/1/105(2r) ~ V4.
Now we assume the following polynomial fit fé(r):

f(r)=yo(rlo)%+ y,(rlo)*+ ye(rlo)®. (B6)
We then find
|<0|Am<r>|w“=2>>|=4\/zly +7y,+63y |E4\/E
2 2m 15 2 4 6 151_‘
(B7)
and

_ 1447
KOIAZ(N I ghim ) =4\ g 17at 18yl (BY)
Thus we have

i (?’2+77’4+63’)’6)2_ 33 (y4+18yp)?

ABE=—1¢ ho 15  #o

(B9)

From numerics we get

AS(z)=0.07226*+0.03485. (B10)

For convenience we take=0.25 A. ThenA) is of the form
of Egs.(B2) and (B6) with

v4=0.07226%, y5=0.03485, (B11)
v4=0.07226/256-0.282 meV, (B12)
v6=0.0348/4096-0.0084 meV. (B13)

We evaluate the first and second terms on the right-hand si

of Eq. (B9) to be 0.115 and 0.025 meV, respectively. Thusy,

we have

AE=0.14 meV. (B14)

Notice thatAE is a very strong function of. For instance,
if you take 0=0.26 A, you gety,=0.33 meV andyg
=0.011 meV in which casaE=0.19 meV.

3. Effect of translation-rotation coupling on the J=1 one-
phonon manifold

will also need thel =2 (d-wave four-phonon states which ¢, of Eq. (2) when the coefficients are as in E82), with

f(r) given by Eq.(B6). We know that states are now char-
acterized by the total angular momentits=Lp+J. So the
energy of theK =2 manifold is given by

E(K=2)=(Lp=1J,=1|U(r,Q)|Lp=1J,=1)

o fdrl
TS

2_ .2
Iy|Zefr2/(202)f(r)32 r

r2

X—

o
f dr| x—ly |2e—r2/(202)
o

x(3,=1/(333-2)[3,=1)

Zf drr2f(r)e "2

—T,

i (B16)

22502f dre~r(2e%

wheref(r) andI” are defined in EqgB6) and(B7), respec-
tively.

Similarly, one can evaluate the Hamiltonian in the mani-
fold of states¢;=|Lp=1,J,=0) and ¢,=|Lp=0,J,=1).
The Hamiltonian matrix in this basis is found to be

4 2
15 5

H=T| > 4 (B17)
5 15

This matrix has an eigenvalugI" which is associated with
the K=2, K,=1 state and the new eigenvalue for tke
=1 manifold, E(K=1)=—3T.

Similarly, one can evaluate the Hamiltonian in the mani-
fold of states ¢1=|Lp=1J,=—-1), ¢,=|Lp=0,J,=0),
d ¢3=|Lp=—1J,=1). The Hamiltonian matrix in this
sis is found to be

[ 2 2 4]
15 5 5
2 8 2
H=I| 5 15 5 (B1y)
4 2
5 5 15

In the absence of coupling between translations and rota-
tions we characterize the single-phonon states by phonoim this manifold we reproduce the eigenvaluesKor 2 and

angular momentunhp, so that

K=1. The new eigenvalue B(K=0)=13T".
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APPENDIX C: NEUTRON-SCATTERING CROSS SECTION R 1
Sy 0i= P, S(E—E;+E¢)|(f |[b’ e isinl =k-
1. General formulation 1=0J Jizlsz:O 1 KT 2P

. . 1 - .
Following Elliott and HartmanA! we write ><[0'-(|j1—|,-2)]|I>T2,

V(r—rn)z@5(r—rn)[b+b’(o-l)], (Cy , 1
Mo Sj__,l‘j:‘] 12J N P,é(E_E|+Ef)|<f |b’elK'RjCO{§K'p)
wheremy is the neutron massr is the neutron spir, is the C
coordinate of the protom,, the coordinate of the neutrohis X[o-11]i)7?, (C7)
the proton spin, and andb’ are the coherent and incoherent
scattering lengths for this scattering. Sifzés very small, where the sums are over states for the fixed spe&oigiso or
we drop that term from now on. The differential scatteringpara of molecule as indicated and the subsciipdicates
cross section is that the wave functions include nuclear-spin functions.
Now we perform the sum over the spin states of the neu-

o B k’ 2 b S(E_E +EnVI2 - tron and proton to obtain the results
JOIE K 4 i0( i+En[V]?, (C2
whereE=%2[(k")2—k?]/(2my), P; is the Boltzmann prob- So_1j=3(0")2 > PiS(E-E+Ey
ability, and the sum is over all states of the system. Here the him0J=1
potential is x| (flei* Risin( L s p)]i )2,
V:brz eiK.Rj'ao-'Ij,a! (C3)
e Si-0j=(0")7 3 PO(E-Ei+Ey)
where k=k’ -k, j labels molecules and=1,2 the atoms b
within a molecule. Performing the sum overwe get X |(f |[e"Risin(1 k- p)|i)?,

V=b'> e*Rif(g-1)coq Lk p)
] : S1aj=5(0)? 3 POE-E+Ey
i=1Ji=

+isinzep)lo-(1j;—1;2)1} (C4

wherel;=1;;+1;,. The first term acts only on ortho mol-
ecules because for paras the total spin is zero and the secofgiere now statelf) and|i) no longer include nuclear spin-
term causes transitions between ortho and para molecules. $@wve functions. We write

we write the scattering cross section as the sum of three
terms, the first of which represents scattering from an ortho
molecule and others ortho-para conversion or the reverse. €
Thus

x|(f &' Ricod 3 re- p) i), (C8)

i Rj_ g K~(RJ(0)+ u) < gl R}O)e—(uz)(x.uj)z[ 1+i(se-uj)]

~e Yol R 1+ (se-uy) ], (C9)
Pa K
T0E - K INXS11+NXS1 o+ N(1=X)Spa], whereR{?) is the equilibrium value oR; and W~ § x*(u?)
(c5  =#xXuztui+ul). Since spherical harmonics of degree
higher than two do not affect the manifolds =0 or J
whereN is the total number of molecules amds the ortho =1 we now use
concentration. Because there are no correlations between
nuclear spins each cross section is actually a sum over cross
sections for each molecule: cos tre- p)=jo( % kp)—4mj (L kp) > YU R)*YD(p)
(C10
5B=§j) Sgi (C6)
and
wherej labels the moleculed is 0—1, etc., and
. sin(3 - p) =4mj (3 kp) 2 Y1()*Yi(p). (C1D
So 1= >  PSE-E+E)|(f|b'e*Risin(ix-p) ’ e e
i=0J¢=1
X[o-(lj1— Ijz)]|i)T2, We expand in displacements to get
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Sooj=(4m)2A > PS(E—E+E(f|[1+iruj]
Ji:O,Jf:1

X2 YIR* Y |i)il[1—iru;]

X2, YR Y p)*|T), (C12

Si.0j=(4m)°B PiS(E—E+E)(f|[1+ix u]
Jizl,Jf:O

X 2 Y1(0* Vi) [1= ke uj]
X 2 YE(R)YH(p)*If), (C13
M

where A=3e ?"[b'j;(3kp)1?, B=2e ?"b'ji(3kp)]1%
and

Sl*)l’j:%(b,)z P|5(E_E|+Ef)<f|[l+lkuj]
Ji=1,.]f=l

X| jo(3 kp)—4miy(3 KP)EV YZ('})*YZ@)}“)

PHYSICAL REVIEW B 66, 214301 (2002

SPo=(4m?B 2 PS(E-E+En> (fIY(pli)
Jj=1J3¢=0 wv

X YH(p)* [F)YI(0)* Y4 (), (C18

SV ,=(4m?B >, PS(E-E+E)
Ji:j.,Jf:O

XMZV (FlutYi(p)iilugYi(p)*|f)
X Kok gY (1) * YH (1), (C19
SO, =(4m?C X PSE-E+E)Y (flY4(p)li)
Ji=1J;=1 v
X(i|Y5(p) | F)YE (1) * Y5(1)*, (C20
whereC=2e ?"[b’j,(3«p)]? and

SM.=Dy X PiS(E-E+E)> (flutli)
Jizl,Jf:l aB

X(iluglf) k% kg+ 47D, >, PiS(E—E+Ey)
J=1J=1

X EB (Flut Y (i) (iuk| f)r kg Y5 (K)*
pa

X(i|[1~ir U]l jo(5 kp)
+47D; >, PS(E-E+Ep) >, (fluXli)
. 1 ~ Lk Ji:l,.]f:l ,LL(XB
—4mj,(3 kp) 2 YE(K)YE(p) }lf ). (C19 ) )
: X(|UEYE(P) Py Kok g Y5 (1)*
Since the phonon energy is much larger than the orienta- 5
tional energy, we may classify contributions according the +(4m) DzJ 7271 PiS(E—Ei+Ey)
=4I

number of phonons that are involved. In the notation of Eq.

(C6) we write

X E (FlutYs(p)*[i)

—_c(0 1 pvaf
Sp=SP+sP, (C19 i X X
HITEAVYZY " *\/V
whereS(Bo) corresponds to a zero-phonon process& X<'|uﬁY (p)|f>K”‘KBY2(K) V2%
a process in which one phonon is created or destroyed. Thus 4
E 1H1 n (C2)

s 1= (4m)°A g lPiﬁ(E—EﬁrEf)E (F1Yi(p)|i)
=0J¢= y72%

X(P YA * ) YI () * Yi (), (C16
éﬂl—<4w>2A E  PId(E-Ei+Ey)

X Eﬁ (FlutYi(p)li)ilubYi(p)*|f)
ura

X Kok gY (1) * Y (K). (C17)

where D,=3(—1)"(b")*e*"jo(3xp)* "j2(3kp)" and
S(fllm is the contribution to the one-phonon ortho cross sec-
tion from thenth term in the first equality.

Note the existence of terms in which a phonon and a roton
are created, the system evolves, and finally a phonon is de-
stroyed. This type of process can only occur when the system
supports roton-phonon interactions. Al the ter&., ., cor-
respond approximately to the phonon energy.

2. Powder average at low temperature

Here we restrict attention to the energy-loss spectrum at

Here and below we use spherical components of a vector low temperature when there are no thermal phonons present.

V1= T (vx*ivy)/\2 andvg=v,. Similarly

Also, we now take the powder average. This corresponds to
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actual experimental situation in Ref. 5, but would also be a 1(9=3A. (C29
reasonable approximation to take account of the differently
oriented symmetry axes of the various octahedral interstitial
sites. Below we calculate the cross sections for the following
processes(a) energy loss by conversiof) energy gain by Here we give a similar analysis of the energy-gain spec-
conversion,(c) single-phonon energy loss, and finallg)  trum at low temperature due to ortho-para conversion. The
zero-phonon transition from JE1M=0) to (J=1M derivation is similar to that for para-ortho conversion so we

b. Energy gain by conversion

==+1). only quote the results:
a. Energy loss by conversion
(8P(EL)=BY PndlE~(Ec—En)]
We have 1-olEL < 'm ¢ Em
0 2
(SQ)=mA > PE-E+E) x| D ¢ m(r.m*er)| ,  (C30
i=0J¢= r

X X, (FIYE(p)iXi|YA(p)*|f), (C22  whereP,, is the probability that thd=1,J,=m state is oc-
® cupied and the role of initial and final states is interchanged
where( ) indicates a powder average. The initial state is thefom the para to ortho processes. The corresponding inte-

J=0,J,=0 zero-phonon state, which we write as grated intensity is
2
¢i=2 ci(r)|r;3=0;3,=0), (€23 '(O)Ef dE<sgﬂo>=B%} P Z Cim(r,M)*ce(r)| =B.
where ¢;(r) is the amplitude of the wave function at the (C3Y
mesh pointr. The final state is =1 zero-phonon state, _ )
which we similarly write as SinceB=3A we see that ratio of the total cross section for

ortho to para conversion to that of para to ortho conversion is
(1—x) to x, wherex s the ortho concentration. Normally the

bt m= % Ctm(r,M)[r;d=1;3,=M) (C24  ratio of energy gain to energy-loss cross sections follows the
’ Boltzmann factor. Here, the populations are setxkyather
and whose energy relative to tie=0 state is than by the temperature.
Eftm=EctEn. (C29 c. Single-phonon energy loss
If E_.=—E is the energy loss, we may write We have the powder average 8§, ., of Eq. (C21) as

SELAEL) =AY JEL—(Ec+Em)] 1
W ENAL AR (S1)=5xD0 % POE-EFE) [(fluf)l?

i=l,Jf=l

2
(C32
X2 |2 crm(rw)*a(n)| . (C26
o
and the corresponding integrated intensity is

To a good approximation the zero-phonon wave functions for
J=1 can be chosen to be composed of a single valug of 1
Thus we may label the wave functions so that m: |(11)Ef dEL<S(11ll;1(EL)>= §K2<U2>D0. (33

(0) — _
(So—1(EL)) A% SLEL—(EctEm)] In terms of the amplitudes of the wave function on the mesh

points, the above result is

2
X Z Cem(r,m*ci(r)| . (C27
1
(1) -2 ) — :
The corresponding integrated intensity is (S =3 DOZ,f PioE—E+E)
2 2
I(O)Ef dEL<S(OO~)>]_>:AE ‘2 nym(r,m)*ci(r) . X; ME Ci(M,r)Cf(M,I’)rL . (C34)
m r ,r
(C28

The inner product of thd=0 wave function and the spatial  Also we obtain the powder average 8 ., andS{") ;.5
part of theJ=1 zero-phonon states is essentially unity. So of Eq. (C21) as
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<S(11—)>1;2(EL)>:<Sgﬂl;3(EL)>*
8w )
=—5 15D1K Z P,S(E, —E;+E))

X > C(112M,M’)(—1)M+M’
M,M’

X(Fluy T8 M @)U ),

(C39
where theT ' (J) are the operator equivalents of the spherical
harmonics®

/15
+2 _ Y32
12" (D)= Vg
. _ |15
T2°()=+ E(Jth"'JrJz)v
TYI) = /i(aJZ—z) (C36)
2 167 72 7
Here
(ilu_yIf)= E (D) C(p, D s . (C37)
and
(flu_u TY M ()iy= =2 clmneutM
M’ 1)*r_yC(121;u,M+M'),
(C39)
where we used
(I=1,3,=M|T5(p)|I=1;J,=M")
5 !
:E5M,L+M'C(121;M L). (C39

We have the contributions to the integrated intensity

I(21)= Igl)* :j dE|_<51—»1 2(EL))

8
_ ,/ 2
=—3 15D1K E P; E, C(112M,M")

MM’
X (=DM M G lu e [EXFlu_y TY M () ).
(C40

Here the sum over final states should be restricted to t2=—
single-phonon states. Higher energy states make only a small
contribution to this sum. So we make the closure approxima-
tion that the sum oveff) extends over all states, in which

case

PHYSICAL REVIEW B 66, 214301 (2002

D 2 |8

P=-NT1g 1K2P2C112MM)

M,M’

X (=DM |uk u T M )i, (C41

As illustrated by Eq(20), the initial state]i) is dominantly
comprised of a single value af,. Thus in Eq.(C4) M
+M'=0 dominates. In addition, the system is nearly isotro-
pic. Then =,,C(112M,—M)(—1)M|u_y|?=0. So, to a
good approximation,

IM+1M=0. (C42)

We have made several approximations, but our result for the
total integrated intensity will not be much affected by these
approximations.

Similarly, we get

167
(1) = g2 : -
(SP1B)= g5 1Dy 2 PiS(E~Ey
+E)[(flumT5(I)]i)[?

327 b
— K
2521 °

+E,)C(112:M,M")C(222M+M ", v)

MU lu_ T3 (D))

> PSE —E

i.f,v,M,M’

X{Fug T MM =7 [i)* (C43
We now evaluate the integrated intensity,
Ia”zdem PiaED)=titt,  (C4d
where
167
=g «*D 2 Pililu-nT*DIf)
X(Fluy TE(D)]iy(= M-, (C45

Making the closure approximation this is

16
t= 7;7 2D22 Pi(ilu_mun T 4D TED) i) (— 1)V
2, : : M_2 > 2
=3 DZZ Pi(ilu_mum|i)(—=1) 3K Dx(u®).
(C40
Similarly

D,«? P,C(112,M,M")C(222;M
2ﬂ o’ 2 PiC )C(

M) (=DM U T M sy T, Y (D)]i).
(Ca
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Again, we treatli) as having a single value d¥,, so that 3. Intensity ratios
M+ M’ =0. Also we ag'\?in assume spatial isotropy, so that  \ye develop an expression for the ratip, defined to be
ZmC(112M, = M)(—=1)"|u_y|*=0. Thent;=0. the integrated intensity due to phonon creation divided by

that due to para-ortho conversion. Using the resultsl {f8r

d. Zero-phonon ortho cross section obtained above we have

Finally we consider the zero-phonon contribution to the

ortho to ortho cross section. Taking the powder average, we O dE(SA(ED) X +IEY]
b= -
have (1-x)dE(SPL(E))  (1-x)1©
(S0 V=47C> D PSE-E+E) 5% u?)Do+ 5 k¥ (u%)Dy [ x
Gt gt B 3A 1-x
x 2 (FIYE(p)iI Y2 (P ) (— D)*. 2 o Jo(3 kp)?+2]o(3 Kp>2( X
M = A5 K N .
27 j1(3 kp)? 1-x
(C48

(C5)

The ratior ¢, defined to be the ortho to para conversion cross
section in energy gain to that in energy loss due to para to
ortho conversion, is given by

If & is the energy of thel,=*=1 levels relative to thel,
=0 level and if the Boltzmann probability of the stdte) is
P, then we may write

(S21)=4nCPoS(E+) 3 [[(m|Y3(p)|0)]? ro= . (C52

+(m[Y;Y(p)|0)|*]+47CS(E~5) Finally, we have ;_,, defined to be the total cross section
(counting both energy loss and energy gdior transitions
X 2 Pm[|(m|Y;([;)|0>|2+ |<m|Y2‘1(;;)|0>|2], within the J=1 ground manifold divided by that due to para
m==1 to ortho conversion, as

(€49 x |EC(Po+Py)
which gives ry—1= ( 1_)() 3A =(Po+Pyry=1(T=0),
- . ] (C53
(S’ 1)=2 CPyS(E+8)+ 2 CP.S(E—6). (C50 where
The ratio of cross sections at energy gain to those of energy 4i(1 2
loss does satisfy detailed balance because within the species _ :( X ) J2(3 kp)
S e ry=1(T=0) — - . (C549
(J=1) we do maintain thermal equilibrium. 1-X/15),(3 kp)?
1Q. Wang and J.K. Johnson, J. Chem. Phyi) 577 (1999. 1p A, Heiney, J.E. Fischer, A.R. McGhie, W.A. Romanow, A.M.
2Q. Wang, S.R. Challa, D.S. Sholl, and J.K. Johnson, Phys. Rev. Denenstein, J.P. McCauley, Jr., A.B. Smith Ill, and D.E. Cox,
Lett. 82, 956 (1999. Phys. Rev. Lett67, 1468(1991.
3M.M. Calbi and M.W. Cole, Rev. Mod. Phy33, 857 (2001). 1S, Liu, Y.J. Lu, M.M. Kappes, and J.A. Ibers, Scier2®4, 408
4A.D. Novaco and J.P. Wroblewski, Phys. Rev.3®, 11 364 (1992).
(1989. 2\W.I.F. David, R.M. Ibberson, J.C. Mathewman, K. Prassides, T.J.
5S.A. FitzGerald, T. Yildirim, L.J. Santodonato, D.A. Neumann, Dennis, J.P. Hare, H.W. Kroto, R. Taylor, and D.R.M. Walton,
J.R.D. Copley, J.J. Rush, and F. Trouw, Phys. Re60B6439 Nature(London 353 147 (1991).
(1999. Binternational Tables for Crystallographyedited by Theo Hahn
6J. Van KranendonkSolid HydrogenPlenum, New York, 1983 (Riedel, Boston, 1983 Vol. 4.
"R.M. Fleming, A.P. Ramirez, M.J. Rosseinsky, D.W. Murphy, **I. Holleman, G. von Heiden, E.H.T. Olthof, P.J.M. van Bentum,
R.C. Haddon, S.M. Zahurak, and A.V. Makhija, Natuten- R. Engeln, G.H. Nachtegaal, A.P. Kentgens, B.H. Meier, A. van
don) 352, 787(1991). der Avoird, and G. Meijer, Phys. Rev. Left9, 1138(1997.

SpA. Heiney, J.E. Fischer, A.R. McGhie, W.J. Romanow, A.M. 15The Atom-Atom Potential Methpedited by A. J. Pertsin and A. I.
Denenstein, J.P. McCauley, Jr., A.B. Smith, Ill, and D.E. Cox, Kitaigorodsky(Springer-Verlag, Berlin, 1986 p. 89.

Phys. Rev. Lett66, 2911(1991). 18T, Yildirim and A. B. Harris (unpublishe
°R. Sachidanandam and A.B. Harris, Phys. Rev. L@%. 1467  7arpack is a collection of Fortran77 subroutines designed to solve
(1992. large scale eigenvalue problems. The package is designed to

214301-19



T. YILDIRIM AND A. B. HARRIS PHYSICAL REVIEW B 66, 214301 (2002
compute a few eigenvalues and corresponding eigenvectors of a Hill, New York, 1964).

generaln by n matrix A. More information abouarPAack and  2°M. E. Rose,Elementary Theory of Angular MomentuiDover,
the code is available at http://www.caam.rice.edu/software/

New York, 1995.
ARPACK 21R.J. Elliott and W.M. Hartmann, Proc. Phys. Soc. Lon86n671
18¢C. Kittel, Quantum Theory of Solid&Viley, New York, 1963, (1967).
Chap. 7.

22T, Nakamura, Prog. Theor. Phyk4, 135 (1955.
9M. Tinkham, Group Theory and Quantum Mechani@dcGraw-

214301-20



	University of Pennsylvania
	ScholarlyCommons
	12-6-2002

	Rotational and Vibrational Dynamics of Interstitial Molecular Hydrogen
	Taner Yildirim
	A. Brooks Harris
	Recommended Citation

	Rotational and Vibrational Dynamics of Interstitial Molecular Hydrogen
	Abstract
	Disciplines
	Comments


	tmp.1438872308.pdf.I7VMh

