670 research outputs found

    On the single mode approximation in spinor-1 atomic condensate

    Full text link
    We investigate the validity conditions of the single mode approximation (SMA) in spinor-1 atomic condensate when effects due to residual magnetic fields are negligible. For atomic interactions of the ferromagnetic type, the SMA is shown to be exact, with a mode function different from what is commonly used. However, the quantitative deviation is small under current experimental conditions (for 87^{87}Rb atoms). For anti-ferromagnetic interactions, we find that the SMA becomes invalid in general. The differences among the mean field mode functions for the three spin components are shown to depend strongly on the system magnetization. Our results can be important for studies of beyond mean field quantum correlations, such as fragmentation, spin squeezing, and multi-partite entanglement.Comment: Revised, newly found analytic proof adde

    Experimental study and multiscale modelling of the high temperature deformation of tempered martensite under multiaxial loading

    Get PDF
    peer-reviewedThe microstructural deformation of ex-service 9Cr-1Mo steel, with a tempered martensitic microstructure, has been examined in this study, through the combined use of electron backscatter diffraction (EBSD) and multiscale modelling techniques. Both the experimental and predicted deformation of the material at a notch root on a range of scales from the specimen level down to the microstructural block level are compared. A tension loaded notch specimen of the material which was extracted from an ex-service power plant pipe was used for this analysis. The deformation at the specimen level was quantified by analysis of the load displacement curves and notch opening displacement, which showed excellent agreement with the predicted results from the experimentally calibrated elastic-plastic finite-element model of the specimen geometry. The microstructural deformation was experimentally measured through the use of EBSD carried out at the notch root before and after high temperature mechanical testing. The initial orientation of the microstructure as well as the displacement around the boundary of the area of interest in the macroscale model were applied to a representative volume element (RVE) and a slip based crystal plasticity modelling framework was implemented to model the in-elastic deformation of the material under high temperature loading

    Fully Gapped Single-Particle Excitations in the Lightly Doped Cuprates

    Full text link
    The low-energy excitations of the lightly doped cuprates were studied by angle-resolved photoemission spectroscopy. A finite gap was measured over the entire Brillouin zone, including along the d_{x^2 - y^2} nodal line. This effect was observed to be generic to the normal states of numerous cuprates, including hole-doped La_{2-x}Sr_{x}CuO_{4} and Ca_{2-x}Na_{x}CuO_{2}Cl_{2} and electron-doped Nd_{2-x}Ce_{x}CuO_{4}. In all compounds, the gap appears to close with increasing carrier doping. We consider various scenarios to explain our results, including the possible effects of chemical disorder, electronic inhomogeneity, and a competing phase.Comment: To appear in Phys. Rev.

    Mapping alveolar oxygen partial pressure in COPD using hyperpolarized helium-3: the multi-ethnic study of atherosclerosis (MESA) COPD study

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and emphysema are characterized by functional and structural damage which increases the spaces for gaseous diffusion and impairs oxygen exchange. Here we explore the potential for hyperpolarized (HP) 3He MRI to characterize lung structure and function in a large-scale population-based study. Participants (n = 54) from the Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study, a nested case-control study of COPD among participants with 10+ packyears underwent HP 3He MRI measuring pAO2, apparent diffusion coefficient (ADC), and ventilation. HP MRI measures were compared to full-lung CT and pulmonary function testing. High ADC values (>0.4 cm2/s) correlated with emphysema and heterogeneity in pAO2 measurements. Strong correlations were found between the heterogeneity of global pAO2 as summarized by its standard deviation (SD) (p < 0.0002) and non-physiologic pAO2 values (p < 0.0001) with percent emphysema on CT. A regional study revealed a strong association between pAO2 SD and visual emphysema severity (p < 0.003) and an association with the paraseptal emphysema subtype (p < 0.04) after adjustment for demographics and smoking status. HP noble gas pAO2 heterogeneity and the fraction of non-physiological pAO2 results increase in mild to moderate COPD. Measurements of pAO2 are sensitive to regional emphysematous damage detected by CT and may be used to probe pulmonary emphysema subtypes. HP noble gas lung MRI provides non-invasive information about COPD severity and lung function without ionizing radiation

    Anticancer Evaluation of Adiantum venustum Don

    Get PDF
    Cancer is a malignant disease that is characterized by rapid and uncontrolled formation of abnormal cells which may mass together to form a growth or tumor, or proliferate throughout the body. Next to heart disease, cancer is a major killer of mankind. This study aims at a preliminary phytochemical screening and anticancer evaluation of Adiantum venustum Don against Ehrlich Ascites Carcinoma in animal model. The findings indicate that ethanolic extract of A. venustum Don possesses significant anticancer activity and also reduces elevated level of lipid peroxidation due to the presence of terpenoids and flavonoids. Thus, ethanolic extract of A. venustum Don could have vast therapeutic application against cancer

    A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability

    Full text link
    Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the solar corona and farther away in the interplanetary medium. The method, based on the conservation principle of magnetic helicity, uses the relative magnetic helicity of the solar source region as input estimates, along with the radius and length of the corresponding CME flux rope. The method was initially applied to cylindrical force-free flux ropes, with encouraging results. We hereby extend our framework along two distinct lines. First, we generalize our formalism to several possible flux-rope configurations (linear and nonlinear force-free, non-force-free, spheromak, and torus) to investigate the dependence of the resulting CME axial magnetic field on input parameters and the employed flux-rope configuration. Second, we generalize our framework to both Sun-like and active M-dwarf stars hosting superflares. In a qualitative sense, we find that Earth may not experience severe atmosphere-eroding magnetospheric compression even for eruptive solar superflares with energies ~ 10^4 times higher than those of the largest Geostationary Operational Environmental Satellite (GOES) X-class flares currently observed. In addition, the two recently discovered exoplanets with the highest Earth-similarity index, Kepler 438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89

    Human Influence on the Climate System (Chapter 3)

    Get PDF
    The AR5 concluded that human influence on the climate system is clear, evident from increasing greenhouse gas concentrations in the atmosphere, positive radiative forcing, observed warming, and physical understanding of the climate system. This chapter updates the assessment of human influence on the climate system for large-scale indicators of climate change, synthesizing information from paleo records, observations and climate models. It also provides the primary evaluation of large-scale indicators of climate change in this Report, complemented by fitness-for-purpose evaluation in subsequent chapters

    Cezanne is a critical regulator of pathological arterial remodelling by targeting β-catenin signalling

    Get PDF
    Aims Pathological arterial remodelling including neointimal hyperplasia and atherosclerosis is the main underlying cause for occluding arterial diseases. Cezanne is a novel deubiquitinating enzyme, functioning as a NF-кB negative regulator, and plays a key role in renal inflammatory response and kidney injury induced by ischaemia. Here we attempted to examine its pathological role in vascular smooth muscle cell (VSMC) pathology and arterial remodelling. Methods and results Cezanne expression levels were consistently induced by various atherogenic stimuli in VSMCs, and in remodelled arteries upon injury. Functionally, VSMCs over-expressing wild-type Cezanne, but not the mutated catalytically-inactive Cezanne (C209S), had an increased proliferative ability and mobility, while the opposite was observed in VSMCs with Cezanne knockdown. Surprisingly, we observed no significant effects of Cezanne on VSMC apoptosis, NF-κB signalling, or inflammation. RNA-sequencing and biochemical studies showed that Cezanne drives VSMC proliferation by regulating CCN family member 1 (CCN1) by targeting β-catenin for deubiquitination. Importantly, local correction of Cezanne expression in the injured arteries greatly decreased VSMC proliferation, and prevented arterial inward remodelling. Interestingly, global Cezanne gene deletion in mice led to smaller atherosclerotic plaques, but with a lower level of plaque stability. Translating, we observed a similar role for Cezanne in human VSMCs, and higher expression levels of Cezanne in human atherosclerotic lesions. Conclusion Cezanne is a key regulator of VSMC proliferation and migration in pathological arterial remodelling. Our findings have important implications for therapeutic targeting Cezanne signalling and VSMC pathology in vascular diseases

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Observation of Orbitally Excited B_s Mesons

    Get PDF
    We report the first observation of two narrow resonances consistent with states of orbitally excited (L=1) B_s mesons using 1 fb^{-1} of ppbar collisions at sqrt{s} = 1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We use two-body decays into K^- and B^+ mesons reconstructed as B^+ \to J/\psi K^+, J/\psi \to \mu^+ \mu^- or B^+ \to \bar{D}^0 \pi^+, \bar{D}^0 \to K^+ \pi^-. We deduce the masses of the two states to be m(B_{s1}) = 5829.4 +- 0.7 MeV/c^2 and m(B_{s2}^*) = 5839.7 +- 0.7 MeV/c^2.Comment: Version accepted and published by Phys. Rev. Let
    corecore