22 research outputs found

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Global perspective of familial hypercholesterolaemia: a cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC)

    No full text
    Background The European Atherosclerosis Society Familial Hypercholesterolaemia Studies Collaboration (FHSC) global registry provides a platform for the global surveillance of familial hypercholesterolaemia through harmonisation and pooling of multinational data. In this study, we aimed to characterise the adult population with heterozygous familial hypercholesterolaemia and described how it is detected and managed globally. Methods Using FHSC global registry data, we did a cross-sectional assessment of adults (aged 18 years or older) with a clinical or genetic diagnosis of probable or definite heterozygous familial hypercholesterolaemia at the time they were entered into the registries. Data were assessed overall and by WHO regions, sex, and index versus non-index cases. Findings Of the 61 612 individuals in the registry, 42 167 adults (21 999 [53·6%] women) from 56 countries were included in the study. Of these, 31 798 (75·4%) were diagnosed with the Dutch Lipid Clinic Network criteria, and 35 490 (84·2%) were from the WHO region of Europe. Median age of participants at entry in the registry was 46·2 years (IQR 34·3–58·0); median age at diagnosis of familial hypercholesterolaemia was 44·4 years (32·5–56·5), with 40·2% of participants younger than 40 years when diagnosed. Prevalence of cardiovascular risk factors increased progressively with age and varied by WHO region. Prevalence of coronary disease was 17·4% (2·1% for stroke and 5·2% for peripheral artery disease), increasing with concentrations of untreated LDL cholesterol, and was about two times lower in women than in men. Among patients receiving lipid-lowering medications, 16 803 (81·1%) were receiving statins and 3691 (21·2%) were on combination therapy, with greater use of more potent lipid-lowering medication in men than in women. Median LDL cholesterol was 5·43 mmol/L (IQR 4·32–6·72) among patients not taking lipid-lowering medications and 4·23 mmol/L (3·20–5·66) among those taking them. Among patients taking lipid-lowering medications, 2·7% had LDL cholesterol lower than 1·8 mmol/L; the use of combination therapy, particularly with three drugs and with proprotein convertase subtilisin–kexin type 9 inhibitors, was associated with a higher proportion and greater odds of having LDL cholesterol lower than 1·8 mmol/L. Compared with index cases, patients who were non-index cases were younger, with lower LDL cholesterol and lower prevalence of cardiovascular risk factors and cardiovascular diseases (all p<0·001). Interpretation Familial hypercholesterolaemia is diagnosed late. Guideline-recommended LDL cholesterol concentrations are infrequently achieved with single-drug therapy. Cardiovascular risk factors and presence of coronary disease were lower among non-index cases, who were diagnosed earlier. Earlier detection and greater use of combination therapies are required to reduce the global burden of familial hypercholesterolaemia. Funding Pfizer, Amgen, Merck Sharp & Dohme, Sanofi–Aventis, Daiichi Sankyo, and Regeneron

    Human immunodeficiency virus continuum of care in 11 european union countries at the end of 2016 overall and by key population: Have we made progress?

    Get PDF
    Background. High uptake of antiretroviral treatment (ART) is essential to reduce human immunodeficiency virus (HIV) transmission and related mortality; however, gaps in care exist. We aimed to construct the continuum of HIV care (CoC) in 2016 in 11 European Union (EU) countries, overall and by key population and sex. To estimate progress toward the Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 target, we compared 2016 to 2013 estimates for the same countries, representing 73% of the population in the region. Methods. A CoC with the following 4 stages was constructed: number of people living with HIV (PLHIV); proportion of PLHIV diagnosed; proportion of those diagnosed who ever initiated ART; and proportion of those ever treated who achieved viral suppression at their last visit. Results. We estimated that 87% of PLHIV were diagnosed; 92% of those diagnosed had ever initiated ART; and 91% of those ever on ART, or 73% of all PLHIV, were virally suppressed. Corresponding figures for men having sex with men were: 86%, 93%, 93%, 74%; for people who inject drugs: 94%, 88%, 85%, 70%; and for heterosexuals: 86%, 92%, 91%, 72%. The proportion suppressed of all PLHIV ranged from 59% to 86% across countries. Conclusions. The EU is close to the 90-90-90 target and achieved the UNAIDS target of 73% of all PLHIV virally suppressed, significant progress since 2013 when 60% of all PLHIV were virally suppressed. Strengthening of testing programs and treatment support, along with prevention interventions, are needed to achieve HIV epidemic control

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    No full text
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical science. © The Author(s) 2019. Published by Oxford University Press

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    No full text
    International audienceDespite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90% confidence level

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    No full text
    International audienceDespite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90% confidence level

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    No full text
    International audienceDespite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90% confidence level

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    No full text
    International audienceDespite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90% confidence level

    Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo

    No full text
    International audienceDespite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70M>70MM_\odot) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e0.30 < e \leq 0.3 at 0.330.33 Gpc3^{-3} yr1^{-1} at 90% confidence level
    corecore