805 research outputs found

    Evaluation and Selection of Gel Base for the Formulation of Dexpanthenol Products

    Get PDF
    Purpose: To formulate dexpanthenol gels with enhanced in vivo absorption properties via skin.Methods: Carboxyvinyl derivatives (Carbopol 980 and Ultrez 10) and poloxamer (Lutrol F 127) were used as the hydrogel base in the formulations. Changes in rheological properties (apparent viscosity and penetration values) during the storage period were examined by Rheotest RN rotational viscometer and PNR12 penetrometer. In vitro release study using Franz diffusion cell was employed to compare the release  characteristics of the formulated hydrogels with those of a reference cream.Results: The flow curves of the gels with Carbopol 980 and Ultrez 10 showed pseudoplastic flow. Lutrol F 127 gels presented thixotropic  behaviour. The consistency of the studied gels was in the following rank order: Lutrol F 127 > Ultrez 10 > Carbopol 980. In vitro results showed that dexpanthenol was released in lower amounts from the reference cream than from the three test gels. No significant differences were observed in the amount of active substance released from the gels due probably to the fact that Carbopol 980 and Ultrez 10 are both carboxyvinyl polymers. The highest amount of dexpanthenol was released from Lutrol F 127 gel.Conclusion: The hydrogel made with Lutrol F 127 gel base possesses the best properties of all the gels and is recommended for the formulation of a suitable dexpanthenol gel.Keywords: Hydrogel, Dexpanthenol, Carboxyvinyl polymers, Gels,  Carbopol, Poloxamer, Rheology, Drug release, Penetromete

    Biomass potential assessment for locating biorefinery plant in Hungary

    Get PDF
    To find a suitable site for a 150,000 metric ton dry material per year (t dm/yr) input capacity biorefinery plant in Hungary is a challenging task. Not only biomass potentials have to be assessed, competing uses, sustainability aspects, public opinion and future threats to feedstock availability should be also taken into account. As a result of our calculations, currently there is enough feedstock available for the targeted input capacity to operate in an ecologically sustainable way. However, several factors may threaten the future of feedstock availability. In the long run enhanced price competition is anticipated for biomass among biorefinery, livestock keeping, timber industry and biomass based renewable energy production. The majority of stakeholders accept in general biorefinery as a promising solution for substituting fossil based plastics, still local interests give priority to a balanced agricultural production including higher shares of husbandry

    Mid-infrared interferometric variability of DG Tau: implications for the inner-disk structure

    Get PDF
    Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 μ\mum silicate feature from emission to absorption temporarily. Aims. We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results. The inner disk (r<1-3 au) spectra exhibit a 10 μ\mum absorption feature related to amorphous silicate grains. The outer disk (r>1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions. For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk.Comment: 16 pages, 13 figure

    The 2008 outburst of EX Lup - silicate crystals in motion

    Get PDF
    EX Lup is the prototype of the EXor class of eruptive young stars. These objects show optical outbursts which are thought to be related to runaway accretion onto the star. In a previous study we observed in-situ crystal formation in the disk of EX Lup during its latest outburst in 2008, making the object an ideal laboratory to investigate circumstellar crystal formation and transport. This outburst was monitored by a campaign of ground-based and Spitzer Space Telescope observations. Here we modeled the spectral energy distribution of EX Lup in the outburst from optical to millimeter wavelengths with a 2D radiative transfer code. Our results showed that the shape of the SED at optical wavelengths was more consistent with a single temperature blackbody than a temperature distribution. We also found that this single temperature component emitted 80-100 % of the total accretion luminosity. We concluded that a thermal instability, the most widely accepted model of EXor outbursts, was likely not the triggering mechanism of the 2008 outburst of EX Lup. Our mid-infrared Spitzer spectra revealed that the strength of all crystalline bands between 8 and 30 um increased right after the end of the outburst. Six months later, however, the crystallinity in the 10 um silicate feature complex decreased. Our modeling of the mid-infrared spectral evolution of EXLup showed that, although vertical mixing should be stronger during the outburst than in the quiescent phase, fast radial transport of crystals (e.g., by stellar/disk wind) was required to reproduce the observed mid-infrared spectra.Comment: Accepted for publication in ApJ, 37 pages, 11 figures, 2 table
    corecore